ELECTRICAL ENGINEERING

M.S. Degree

The M.S. degree includes three options: a written thesis and oral defense for students interested in research and development; a project; or a course-work-only option. UAF offers an engineering Ph.D. program for students with an approved curriculum. Capable students with undergraduate degrees in physics, mathematics or related sciences, as well as in various branches of engineering, may also be admitted for graduate study. A student with adequate background can usually complete M.S. requirements within two years and a Ph.D. in another three years.

Graduate degree programs in electrical and computer engineering are closely connected with faculty research activities. Main areas of research include communications, radar, lidar and sonar remote sensing, instrumentation and microwave circuit design, electric power and energy systems, digital and computer engineering, nanotechnology, controls, and robotics. Current research topics include high-latitude satellite communications, rocket telemetry, radio wave propagation, ultra-wideband wireless communications, electromagnetic and acoustic wave propagation, remote biomedical and environmental instrumentation, microwave design, digital signal processing, digital and physical electronics, computer applications, remote hybrid electric power systems, electric power system design and analyses, electric power quality improvement, system identification, simulation, computer-controlled systems, control theory, robotics, and automation.

A number of on- and off-campus research facilities are available to students. Satellite, rocket and ground-based communication studies are carried out on campus and at Poker Flat Research Range, the only university-operated rocket range in the world. The Space Systems Engineering Laboratory provides students hands-on experience in all aspects of space system engineering through a design/build/launch paradigm applied to balloon and rocket payloads as well as small satellites. The Alaska Center for Unmanned Aircraft Systems Integration affords opportunities to work with drones and other UAVs. Department research laboratories include microwave, wireless communications, ultra-wide-band technology, waves, power electronics/robotics, instrumentation and digital laboratories.

Alaska's environment and remote location provide unique opportunities for research, such as the use of acoustic, light and radio wave techniques for measuring fish in Alaska rivers to the geophysical properties of the aurora. Remote sensing for biomedical (animal tracking) and environmental (groundwater and air monitoring) applications is an important research area for Alaska. Electric power systems research includes issues related to isolated rural Alaska communities, analysis of larger interconnected generation, transmission and distribution systems serving major Alaska population centers, and the use of alternative energy systems.

Graduate students in electrical and computer engineering at UAF receive the highest quality contemporary education available at the graduate level and perform research appropriate to the technical needs of Alaska, the nation and the world.

Minimum Requirements for Electrical Engineering M.S. Degree: 32 credits

College of Engineering and Mines
Department of Electrical and Computer Engineering (http://cem.uaf.edu/ece/)