<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Offered</th>
<th>Description</th>
<th>Prerequisites</th>
<th>Attributes</th>
<th>Lecture + Lab + Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT F200X</td>
<td>Elementary Statistics (m)</td>
<td>3</td>
<td>Fall and Spring</td>
<td>Introduction to concepts and applications of elementary statistical methods. Topics include sampling and data analysis, descriptive statistics, elementary probability, probability and sampling distributions, confidence intervals, hypothesis testing, correlation, and simple linear regression.</td>
<td>Prerequisites: Appropriate placement score; or a grade of B or better in MATH F105 or MATH F105N or in all three of MATH F105G and MATH F105H and MATH F105J; or grade of C- or better in a math course numbered F122 or above.</td>
<td>UAF GER Mathematics Req</td>
<td>3 + 0 + 0</td>
</tr>
<tr>
<td>STAT F300</td>
<td>Statistics</td>
<td>3</td>
<td>Fall and Spring</td>
<td>A calculus-based course emphasizing applications. Topics include probability, joint and conditional probability, expectation and variance, parameter estimation (method of moments and maximum likelihood), one and two sample hypothesis tests, simple linear regression and one-way analysis of variance.</td>
<td>Prerequisites: MATH F230X or MATH F251X or placement.</td>
<td></td>
<td>3 + 0 + 0</td>
</tr>
<tr>
<td>STAT F401</td>
<td>Regression and Analysis of Variance</td>
<td>4</td>
<td>Fall and Spring</td>
<td>Multiple regression including multiple and partial correlation, extra sum of squares principle, indicator variables, polynomial models, model selection, and assessment of underlying assumptions. Analysis of variance and covariance for multifactor studies in completely random and randomized complete block designs, multiple comparisons and orthogonal contrasts. Matrix concepts are taught as needed.</td>
<td>Prerequisites: STAT F200X or STAT F300.</td>
<td></td>
<td>3 + 0 + 0</td>
</tr>
<tr>
<td>STAT F401L</td>
<td>STAT F401 Laboratory</td>
<td>0</td>
<td>Fall and Spring</td>
<td>Computer laboratory section for STAT F401 Regression and Analysis of Variance. Activities may include case studies involving the application of lecture topics and methods in R software.</td>
<td>Prerequisites: STAT F401.</td>
<td></td>
<td>0 + 3 + 0</td>
</tr>
<tr>
<td>STAT F402</td>
<td>Scientific Sampling</td>
<td>3</td>
<td>Fall</td>
<td>Sampling methods, including simple random, stratified and systematic and one- and two-stage cluster sampling; estimation procedures, including ratio and regression methods; special area and point sampling procedures; optimum allocation. Adaptive and probability sampling; bootstrapping and basic mark-and-recapture.</td>
<td>Prerequisites: STAT F200X or STAT F300.</td>
<td></td>
<td>3 + 0 + 0</td>
</tr>
<tr>
<td>STAT F454</td>
<td>Statistical Consulting Seminar</td>
<td>1</td>
<td>Spring</td>
<td>Introduction to statistical consulting and data analysis. Emphasis on interaction with researchers and identification of scientific and statistical issues relevant to the research problem. Includes regular class meetings as well as supervised meetings with researchers. Designed to combine mathematical statistics with applications from a variety of fields. Students from any field of study with strong quantitative skills are encouraged to enroll. May be repeated for a total of three credits.</td>
<td>Prerequisites: STAT F200X or STAT F300; STAT F401; and MATH F408.</td>
<td></td>
<td>1 + 0 + 0</td>
</tr>
<tr>
<td>STAT F461</td>
<td>Applied Multivariate Statistics</td>
<td>3</td>
<td>Even-numbered Years</td>
<td>Estimation and hypothesis testing, multivariate normality and its assessment, multivariate one and two sample tests, confidence regions, multivariate analysis of variance, discrimination and classification, principal components, factor analysis, clustering techniques and graphical presentation. Statistical computing packages utilized in assignments.</td>
<td>Prerequisites: STAT F401.</td>
<td></td>
<td>3 + 0 + 0</td>
</tr>
<tr>
<td>STAT F602</td>
<td>Experimental Design</td>
<td>3</td>
<td>Even-numbered Years</td>
<td>Constructing and analyzing designs for experimental investigations; completely randomized, randomized block and Latin-square designs, split-plot design, incomplete block design, confounded factorial designs, nested designs, treatment of missing data, comparison of designs.</td>
<td>Prerequisites: STAT F401.</td>
<td></td>
<td>3 + 0 + 0</td>
</tr>
<tr>
<td>STAT F605</td>
<td>Spatial Statistics</td>
<td>3</td>
<td>Even-numbered Years</td>
<td>Stochastic processes and variograms. Geostatistics including kriging and spatial design of experiments. Point processes including model selection and K-functions. Lattice process models and image analysis. Computer-intensive statistical methods.</td>
<td>Prerequisites: STAT F401; MATH F251X; MATH F252X; MATH F253X.</td>
<td></td>
<td>3 + 0 + 0</td>
</tr>
</tbody>
</table>
STAT F611 Time Series
3 Credits
Offered Spring Odd-numbered Years
Prerequisites: STAT F401.
Lecture + Lab + Other: 3 + 0 + 0

STAT F621 Nonparametric Statistics
3 Credits
Offered Fall Odd-numbered Years
Traditional and modern nonparametric statistical techniques. Distribution-free methods designed for small samples including sign, rank and randomization tests, correlation estimators, and bootstrapping. Modern techniques including kernel density estimation, survival analysis models, kernel and spline regression, generalized additive models, classification methods, robust estimation, regression trees, and neural net models.
Prerequisites: STAT F401.
Lecture + Lab + Other: 3 + 0 + 0

STAT F631 Categorical Data Analysis
3 Credits
Offered Fall Odd-numbered Years
Prerequisites: STAT F401.
Lecture + Lab + Other: 3 + 0 + 0

STAT F641 Bayesian Statistics
3 Credits
Offered Fall Even-numbered Years
Prerequisites: MATH F252X; (MATH F371 and MATH F408) or STAT F651.
Lecture + Lab + Other: 3 + 0 + 0

STAT F642 Bayesian Decision Theory for Resource Management
4 Credits
Offered Spring Even-numbered Years
Application of decision theory to problems in natural resources management. Students will learn to perform Bayesian calculations and uncomplicated decision analysis themselves.
Prerequisites: FISH F621.
Cross-listed with FISH F642.
Lecture + Lab + Other: 2 + 2 + 0

STAT F651 Statistical Theory I
3 Credits
Offered Fall
Probability and distribution of random variables. Conditional probability and stochastic independence. Distributions of functions of random variables. Expected values. Limiting distributions. Distributions derived from the normal distribution. Designed to combine mathematical statistics with applications from a variety of fields. Students from any field of study with strong quantitative skills are encouraged to enroll.
Prerequisites: MATH F253X; MATH F314; previous statistics course.
Lecture + Lab + Other: 3 + 0 + 0

STAT F652 Statistical Theory II
4 Credits
Offered Spring Odd-numbered Years
Prerequisites: STAT F651.
Lecture + Lab + Other: 4 + 0 + 0

STAT F653 Statistical Theory III: Linear Models
3 Credits
Offered Spring Even-numbered Years
Best linear unbiased estimation in the general linear model, Gauss-Markov theory and applications, maximum likelihood estimation for linear models, multivariate normal distributions, linear regression and analysis of variance, weighted regression, robust and nonlinear regression and generalized linear models. Designed to combine mathematical statistics with applications from a variety of fields. STAT F401 or equivalent course in applied linear regression modeling is strongly recommended.
Prerequisites: STAT F651 or MATH F371; MATH F253X; MATH F314.
Lecture + Lab + Other: 3 + 0 + 0

STAT F654 Statistical Consulting Seminar
1 Credit
Offered Spring
Introduction to statistical consulting and data analysis. Emphasis on interaction with researchers and identification of scientific and statistical issues relevant to the research problem. Includes regular class meetings as well as supervised meetings with researchers. Designed to combine mathematical statistics with applications from a variety of fields. Students from any field of study with strong quantitative skills are encouraged to enroll. May be repeated for a total of three credits.
Prerequisites: STAT F200X or STAT F300; STAT F401; and MATH F408.
Lecture + Lab + Other: 1 + 0 + 0

STAT F661 Sampling Theory
3 Credits
Offered As Demand Warrants
Prerequisites: STAT F200X; STAT F401.
Lecture + Lab + Other: 3 + 0 + 0

STAT F671 Statistical Computing
3 Credits
Offered Spring Odd-numbered Years
Topics in statistical programming which may include Advanced R, program design, parallel processing, object oriented programming, functions, environments, debugging, loops and their replacements, C++ in R and code optimization. Optimizers, linear programming, random number generators including MCMC. Web applications. Writing R packages. Reproducible research. Text mining and relational databases.
Prerequisites: STAT F401; MATH F251X or MATH F230X; Knowledge of basic R highly recommended.
Lecture + Lab + Other: 3 + 0 + 0
STAT F692 Seminar
1-6 Credits
Lecture + Lab + Other: 0 + 0 + 0

STAT F692P Seminar
1-6 Credits
Lecture + Lab + Other: 0 + 0 + 0

STAT F698 Non-thesis Research/Project
1-6 Credits
Lecture + Lab + Other: 0 + 0 + 0