MINING ENGINEERING (MIN)

MIN F101 Minerals, Man and the Environment
3 Credits
Offered As Demand Warrants
A general survey of the impact of the mineral industries on man's economic, political and environmental systems.
Lecture + Lab + Other: 3 + 0 + 0

MIN F103 Introduction to Mining Engineering
1 Credit
Offered Fall
Concepts and methods utilized in mining engineering and mining unit operations.
Lecture + Lab + Other: 1 + 0 + 0

MIN F104 Mining Safety and Operations Laboratory
1 Credit
Offered Fall
Practical training at the Silver Fox Mine in mining operations and safety. Course complies with Mine Safety and Health Administration (MSHA) 40 hour new miner training.
Lecture + Lab + Other: 0 + 3 + 0

MIN F202 Mine Surveying
3 Credits
Offered Fall
Surveying principles for surface and underground control of mining properties. Field and office procedures for preparation of maps and engineering data.
Prerequisites: MATH F151X, MATH F152X.
Lecture + Lab + Other: 2 + 3 + 0

MIN F225 Quantitative Methods in Mining Engineering
2 Credits
Offered Fall
Introduction to ore reserve estimation, classical estimation methods and techniques, error in estimations and pitfalls, introduction to classical statistics, introduction to geostatistics, ordinary kriging, block kriging, modeling the sample variogram, co-kriging and global estimation.
Prerequisites: MATH F251X.
Lecture + Lab + Other: 2 + 0 + 0

MIN F226 Mine Development
2 Credits
Offered Spring
Review of pre-mining activities. Access to mining property, haul road location and design. Access to ore body; shaft, slope and ramp locations; shape, sizing and development. Development of access in frozen ground environments. Layout of development mains, cross-cuts, raises and winzes for ventilation, transport and optimum extraction of ore body.
Prerequisites: MIN F103; MIN F225.
Recommended: MATH F251X.
Lecture + Lab + Other: 2 + 0 + 0

MIN F301 Mine Plant Design
3 Credits
Offered Spring
Quantitative study and design of various systems and equipment used in haulage, hoisting, drainage, pumping and power (compressed air and electricity). Importance of the natural conditions and production level in the equipment selection procedure emphasized.
Prerequisites: ES F208 and ES F307.
Recommended: ES F341.
Lecture + Lab + Other: 3 + 0 + 0

MIN F302 Underground Mine Environmental Engineering
3 Credits
Offered Spring
Analysis of underground mine ventilation systems, ventilation planning, design and engineering control, mine ventilation network.
Prerequisites: MIN F103; MIN F226; ES F341.
Lecture + Lab + Other: 2 + 3 + 0

MIN F313 Introduction to Mineral Preparation
3 Credits
Offered Fall Odd-numbered Years
Elementary theory and principles of unit processes of liberation, concentration and solid-fluid separation as applied to mineral benefications.
Prerequisites: Junior standing.
Lecture + Lab + Other: 2 + 3 + 0

MIN F370 Rock Mechanics
3 Credits
Offered Spring
Physical and mechanical properties of rock; rock mass classification systems; stress distribution in the vicinity of mining openings, design criteria and support for structures in rock mass, instrumentation and monitoring of opening's stability as well as strata control and surface subsidence.
Corequisites: ES F331.
Lecture + Lab + Other: 2 + 3 + 0

MIN F380 Computer Aided Orebody Modeling
1 Credit
Offered As Demand Warrants
Develops an orebody model from drill hole data in a computer-aided design environment. The data is converted into a drill hole database, following which, a 3D visual model is developed. Basic tools covered include concepts of computer-aided design, database error checking and triangulation.
Prerequisites: GEOS F332.
Lecture + Lab + Other: 2 + 3 + 0

MIN F401 Mine Site Field Trips
1 Credit
Offered As Demand Warrants
Field trips to active surface and underground mines to gain perceptual knowledge of modern mining systems by observation. Includes a systematic summarization and analysis of the mine after each visit to gain an in-depth understanding of mining engineering principles.
Prerequisites: MIN F202; MIN F301; MIN F302; MIN F370.
Lecture + Lab + Other: 0.5 + 3 + 0
MIN F407 Mine Reclamation and Environmental Management (W) 3 Credits
Offered Fall Even-numbered Years
Prerequisites: CHEM F106X; WRTG F111X, WRTG F211X, WRTG F212X, WRTG F213X or WRTG F214X.
Recommended: ES F341.
Lecture + Lab + Other: 3 + 0 + 0

MIN F408 Mineral Valuation and Economics (O) 3 Credits
Offered Spring
Prerequisites: MIN F225; MIN F454.
Lecture + Lab + Other: 3 + 0 + 0

MIN F415 Coal Preparation 3 Credits
Offered As Demand Warrants
Prerequisites: MIN F313 or graduate standing.
Lecture + Lab + Other: 2 + 3 + 0

MIN F433 Principles and Applications of Industrial Explosives 3 Credits
Offered Fall
Prerequisites: MIN F370.
Lecture + Lab + Other: 3 + 0 + 0

MIN F444 Accidents, Emergency and Safety Management in Mines 3 Credits
Offered As Demand Warrants
Prerequisites: MIN F302.
Corequisites: MIN F454.
Lecture + Lab + Other: 3 + 0 + 0

MIN F454 Underground Mining Methods 3 Credits
Offered Fall
Prerequisites: WRTG F111X, WRTG F211X, WRTG F212X, WRTG F213X or WRTG F214X; MIN F301; MIN F302; MIN F370.
Lecture + Lab + Other: 3 + 0 + 0

MIN F482 Computer-aided Mine Design: VULCAN 3 Credits
Offered Fall
Prerequisites: MIN F225; MIN F226; Junior or senior standing in mining engineering.
Lecture + Lab + Other: 2 + 3 + 0

MIN F484 Surface Mining Methods 2 Credits
Offered Spring Even-numbered Years
Prerequisites: WRTG F111X; WRTG F211X, WRTG F212X, WRTG F213X or WRTG F214X; MIN F301; MIN F302; MIN F370.
Lecture + Lab + Other: 0 + 0 + 0

MIN F485 Mining Engineering Exit Interview 0 Credit
Offered Spring
Prerequisites: Senior standing in mining engineering.
Corequisites: MIN F490.
Lecture + Lab + Other: 0 + 0 + 0

MIN F489 Mining Design Project I 1 Credit
Offered Fall
Prerequisites: WRTG F111X, WRTG F211X, WRTG F212X, WRTG F213X or WRTG F214X; MIN F301; MIN F302; MIN F370.
Special Notes: Both MIN F489 and MIN F490 must be completed to fulfill the writing intensive requirement.
Lecture + Lab + Other: 1 + 0 + 0

MIN F490 Mining Design Project II (W) 2 Credits
Offered Spring
Prerequisites: WRTG F111X; WRTG F212X, WRTG F213X or WRTG F214X; MIN F301; MIN F302; MIN F370; MIN F454; MIN F489.
Special Notes: Both MIN F489 and MIN F490 must be completed to fulfill the writing intensive requirement.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Offered As Demand Warrants</th>
<th>Prerequisites</th>
<th>Lecture + Lab + Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN F601</td>
<td>Application of Artificial Neural Networks</td>
<td>3</td>
<td></td>
<td></td>
<td>3 + 0 + 0</td>
</tr>
<tr>
<td></td>
<td>Basic neural network architectures, including rules, training methods and practical applications. Training and application issues typical of earth sciences problems. Some topics require mathematical analysis. Genetic algorithms and use of network ensembles will be briefly presented.</td>
<td></td>
<td>Graduate standing in engineering; programming ability; knowledge of MATLAB, a plus.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIN F621</td>
<td>Advanced Mineral Economics</td>
<td>3</td>
<td></td>
<td></td>
<td>3 + 0 + 0</td>
</tr>
<tr>
<td></td>
<td>Offered As Demand Warrants</td>
<td></td>
<td>Introduction to options valuation of mineral projects; uncertainty and risk in mineral valuations; stochastic price models; dynamic programming and investment analysis; real options techniques.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIN F631</td>
<td>Research Methods in Mineral Engineering</td>
<td>4</td>
<td></td>
<td></td>
<td>3 + 3 + 0</td>
</tr>
<tr>
<td></td>
<td>Offered As Demand Warrants</td>
<td></td>
<td>Research methods including problem definition and statement, designing experiments, collecting and interpreting data. Methods of theoretical and experimental analysis will be reviewed and examples given.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIN F635</td>
<td>Advanced Geostatistical Applications</td>
<td>3</td>
<td></td>
<td>MIN F408; graduate standing.</td>
<td>2 + 3 + 0</td>
</tr>
<tr>
<td></td>
<td>Offered As Demand Warrants</td>
<td></td>
<td>Introduction to the theory and application of geostatistics. Review of classical statistics, continuous and discrete distributions, hypothesis testing and global estimation. Presentation of fundamental geostatistical concepts including: variogram, estimation variance, block variance, kriging, geostatistical simulation. Emphasis on the practical application of geostatistical techniques.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIN F637</td>
<td>Mine Systems Simulation</td>
<td>3</td>
<td></td>
<td>MIN F409; graduate standing.</td>
<td>2 + 3 + 0</td>
</tr>
<tr>
<td></td>
<td>Offered As Demand Warrants</td>
<td></td>
<td>Application of computer simulation to the analysis of static and dynamic mine systems and the development of useful programs for mine operators. Design of simulation experiments in mining engineering.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIN F652</td>
<td>Numerical Methods in Mine Ventilation</td>
<td>3</td>
<td>Offered As Demand Warrants</td>
<td>MIN F302; graduate standing.</td>
<td>2 + 3 + 0</td>
</tr>
<tr>
<td></td>
<td>Offered As Demand Warrants</td>
<td></td>
<td>Differencing schemes for the partial differential equations of flow in mine networks, typical boundary conditions for mine ventilation systems, computer-aided solution techniques. Application to flow of fluids through porous media is covered.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIN F673</td>
<td>Advanced Rock Mechanics</td>
<td>3</td>
<td>Offered As Demand Warrants</td>
<td>MIN F370; graduate standing.</td>
<td>2 + 3 + 0</td>
</tr>
<tr>
<td></td>
<td>The study of theoretical and experimental methods in rock mechanics. State of stress and potential failure zone around two- and three-dimensional structures in rock based on theoretical, numerical and experimental techniques and failure criteria are presented.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIN F682</td>
<td>Computer-aided Mine Design: VULCAN</td>
<td>3</td>
<td>Offered Fall</td>
<td>Familiarization with VULCAN mine design software to store, manage, model and display exploration data. Estimate volume, tonnage and quality of reserve, design declines and development drives in underground and surface coal and hardrock mines, design underground and surface coal mine plans and design of underground stopes, perform underground and surface grade control.</td>
<td>2 + 3 + 0</td>
</tr>
<tr>
<td></td>
<td>Stacked with MIN F482.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIN F688</td>
<td>Graduate Seminar I</td>
<td>1</td>
<td>Offered As Demand Warrants</td>
<td>Admission to graduate program.</td>
<td>1 + 0 + 0</td>
</tr>
<tr>
<td></td>
<td>Preparation and presentation of research outlines by graduate students and participation in regularly organized mineral engineering department seminars.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIN F698</td>
<td>Non-thesis Research/Project</td>
<td>1-9</td>
<td></td>
<td></td>
<td>0 + 0 + 0</td>
</tr>
<tr>
<td></td>
<td>Offered As Demand Warrants</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIN F699</td>
<td>Thesis</td>
<td>1-9</td>
<td></td>
<td></td>
<td>0 + 0 + 0</td>
</tr>
</tbody>
</table>