MINING ENGINEERING (MIN)

College of Engineering and Mines
Department of Mining and Mineral Engineering (https://www.uaf.edu/cem/programs/mining-engineering/)
907-474-7388

MIN F101 Minerals, Man and the Environment
3 Credits
Offered As Demand Warrants
A general survey of the impact of the mineral industries on man's economic, political and environmental systems.
Lecture + Lab + Other: 3 + 0 + 0
Grading System: Letter Grades with option of Plus/Minus

MIN F103 Introduction to Mining Engineering
1 Credit
Offered Fall
Concepts and methods utilized in mining engineering and mining unit operations.
Lecture + Lab + Other: 1 + 0 + 0
Grading System: Letter Grades with option of Plus/Minus

MIN F104 Mining Safety and Operations Laboratory
1 Credit
Offered Fall
Practical training at the Silver Fox Mine in mining operations and safety. Course complies with Mine Safety and Health Administration (MSHA) 40 hour new miner training.
Lecture + Lab + Other: 0 + 3 + 0
Grading System: Letter Grades with option of Plus/Minus

MIN F110 Elements of Mine Safety, Operations and Development
2 Credits
Offered Fall and Spring
Introduction to pre-mining activities, mine unit operations and mine safety. Basics of mine development; access to mining property, haul roads, ore body, shaft, slope and ramp locations; frozen ground environments and run-off water. Underground and surface mining hazards, safe practices, and engineered controls.
Recommended: MATH F151X, MATH F152X.
Lecture + Lab + Other: 2 + 0 + 0
Grading System: Letter Grades with option of Plus/Minus

MIN F202 Surveying and CAD for Engineers
2 Credits
Offered Fall
Surveying principles for surface and underground properties. Field and office procedures for preparation of maps and engineering data. Introduction to engineering CAD software.
Prerequisites: MATH F151X, MATH F152X.
Lecture + Lab + Other: 1 + 3 + 0
Grading System: Letter Grades with option of Plus/Minus

MIN F225 Quantitative Methods in Mining Engineering
2 Credits
Offered Fall
Introduction to ore reserve estimation, classical estimation methods and techniques, error in estimations and pitfalls, introduction to classical statistics, introduction to geostatistics, ordinary kriging, block kriging, modeling the sample variogram, co-kriging and global estimation.
Prerequisites: MATH F251X.
Lecture + Lab + Other: 2 + 0 + 0
Grading System: Letter Grades with option of Plus/Minus

MIN F226 Mine Development
2 Credits
Offered Spring
Review of pre-mining activities. Access to mining property, haul road location and design. Access to ore body; shaft, slope and ramp locations; shape, sizing and development. Development of access in frozen ground environments. Layout of development mains, cross-cuts, raises and winzes for ventilation, transport and optimum extraction of ore body.
Prerequisites: MIN F103; MIN F225.
Recommended: MATH F251X.
Lecture + Lab + Other: 2 + 0 + 0
Grading System: Letter Grades with option of Plus/Minus

MIN F301 Mine Plant Design
3 Credits
Offered Spring
Quantitative study and design of various systems and equipment used in haulage, hoisting, drainage, pumping and power (compressed air and electricity). Importance of the natural conditions and production level in the equipment selection procedure emphasized.
Prerequisites: ES F208 and ES F307.
Recommended: ES F341.
Lecture + Lab + Other: 3 + 0 + 0
Grading System: Letter Grades with option of Plus/Minus

MIN F302 Underground Mine Environmental Engineering
3 Credits
Offered Spring
Analysis of underground mine ventilation systems, ventilation requirements and system structure, ventilation planning, design and engineering control, mine ventilation network, gas and dust explosion, rescue and recovery.
Prerequisites: MIN F110; ES F341.
Lecture + Lab + Other: 2 + 3 + 0
Grading System: Letter Grades with option of Plus/Minus

MIN F303 Ore Handling and Industrial Explosives
3 Credits
Offered Spring
Quantitative study and design of various systems and equipment used in haulage, hoisting, drainage, pumping and power (compressed air and electricity). Types and properties of industrial explosives; systems of initiation; theories of blasting; designs of open pit bench blasting; designs of underground blasting/rounds; and applications in mining.
Prerequisites: ES F208; ES F307; MIN F370 (may be taken concurrently).
Recommended: ES F341.
Lecture + Lab + Other: 3 + 0 + 0
Grading System: Letter Grades with option of Plus/Minus

MIN F313 Introduction to Mineral Preparation
3 Credits
Offered Spring
Elementary theory and principles of unit processes of liberation, concentration and solid-fluid separation as applied to mineral beneficiation.
Prerequisites: Junior standing.
Lecture + Lab + Other: 2 + 3 + 0
Grading System: Letter Grades with option of Plus/Minus
MIN F370 Rock Mechanics
3 Credits
Offered Spring
Physical and mechanical properties of rock; rock mass classification systems; stress distribution in the vicinity of mining openings, design criteria and support for structures in rock mass, instrumentation and monitoring of opening's stability as well as strata control and surface subsidence.
Prerequisites: ES F331; may be taken concurrently.
Lecture + Lab + Other: 2 + 3 + 0
Grading System: Letter Grades with option of Plus/Minus

MIN F380 Computer Aided Orebody Modeling
1 Credit
Offered As Demand Warrants
Develops an orebody model from drill hole data in a computer-aided design environment. The data is converted into a drill hole database, following which, a 3D visual model is developed. Basic tools covered include concepts of computer-aided design, database error checking and triangulation.
Prerequisites: GEOS F332.
Lecture + Lab + Other: 2 + 3 + 0
Grading System: Letter Grades with option of Plus/Minus

MIN F390 Geostatistics and Mineral Economics
3 Credits
Offered Fall
Introduction to ore reserve estimation, classical estimation methods and techniques, error in estimations and pitfalls, introduction to classical statistics, introduction to geostatistics, ordinary kriging, block kriging, modeling the sample variogram, co-kriging and global estimation. Introduction to engineering economics, ore sampling and reserve calculations, and mine feasibility studies.
Prerequisites: COM F131X or COM F141X; GE F261; MATH F251X.
Lecture + Lab + Other: 3 + 0 + 0
Grading System: Letter Grades with option of Plus/Minus

MIN F401 Mine Site Field Trips
1 Credit
Offered As Demand Warrants
Field trips to active surface and underground mines to gain perceptual knowledge of modern mining systems by observation. Includes a systematic summarization and analysis of the mine after each visit to gain an in-depth understanding of mining engineering principles.
Prerequisites: MIN F202; MIN F301; MIN F302; MIN F370.
Lecture + Lab + Other: 0.5 + 3 + 0
Grading System: Pass/Fail Grades

MIN F407 Mine Reclamation and Environmental Management
2 Credits
Offered Fall Even-numbered Years
Principles and practices of mine reclamation and waste disposal. Pre-mining assessments and plans. Design of settling and tailings ponds and waste impoundments. Stream bed restoration and revegetation.
Prerequisites: CHEM F106X; WRTG F111X; WRTG F211X, WRTG F212X, WRTG F213X or WRTG F214X.
Recommended: ES F341.
Lecture + Lab + Other: 2 + 0 + 0
Grading System: Letter Grades with option of Plus/Minus

MIN F408 Mineral Valuation and Economics
3 Credits
Offered Spring
Introduction to engineering economics, ore sampling and reserve calculations, and mine feasibility studies.
Prerequisites: COM F131X or COM F141X; GE F375 or MIN F301.
Lecture + Lab + Other: 3 + 0 + 0
Grading System: Letter Grades with option of Plus/Minus

MIN F409 Operations Research and Computer Applications in Mineral Industry
2 Credits
Offered Spring
Fundamental concepts of probability and statistics and the use of operations research and computer techniques for understanding, analysis, forecasting and optimization of mining operations and systems.
Prerequisites: MIN F390; MIN F454.
Lecture + Lab + Other: 2 + 0 + 0
Grading System: Letter Grades with option of Plus/Minus

MIN F415 Coal Preparation
3 Credits
Offered As Demand Warrants
Unit operations, flowsheets, washability characteristics and control by sink-float methods for coal preparation plants. Market requirements and economics of preparation.
Prerequisites: MIN F313 or graduate standing.
Lecture + Lab + Other: 2 + 3 + 0
Grading System: Letter Grades with option of Plus/Minus

MIN F443 Principles and Applications of Industrial Explosives
3 Credits
Offered Fall
Types and properties of industrial explosives; systems of initiation; theories of blasting; designs of open pit bench blasting; designs of underground blasting/rounds; applications in mining, civil construction and other fields; blasting vibration, structural damage and their control; overbreak control; safe practices; safety regulations; blast hole drilling and drilling equipment.
Prerequisites: MIN F370.
Lecture + Lab + Other: 2 + 3 + 0
Grading System: Letter Grades with option of Plus/Minus

MIN F444 Accidents, Emergency and Safety Management in Mines
2 Credits
Offered Spring
Accident statistics, accident investigation and prevention, major provisions of current laws, rule-making procedures, mine fires and explosions, causes and prevention, loss control principles and methods, emergency evacuation, emergency response and emergency preparedness, safety management systems and behavioral science applications.
Prerequisites: MIN F302; MIN F482.
Lecture + Lab + Other: 2 + 0 + 0
Grading System: Letter Grades with option of Plus/Minus

MIN F454 Underground Mining Methods
2 Credits
Offered Fall
Underground mining methods for coal and non-coal deposits. Includes design parameters, selection of mining methods, mine planning process, auxiliary operations and various underground mining methods.
Prerequisites: MIN F302; MIN F370; MIN F482.
Lecture + Lab + Other: 2 + 0 + 0
Grading System: Letter Grades with option of Plus/Minus
MIN F490 Mining Design Project II 2 Credits Offered Spring Design of mine layout including extraction and beneficiation, and economic evaluation of a mining project. A comprehensive written report of the design and analysis is required.
Prerequisites: MIN F454; MIN F489.
Lecture + Lab + Other: 1 + 4 + 0 Grading System: Letter Grades with option of Plus/Minus

MIN F491 Automation and Control 2 Credits Offered Spring Automation practices for controlling equipment and operations. Use of various control devices, such as sensors, transducers, motor starters, variable-frequency motor drives, and proportional hydraulic valves. Ladder logic programming of programmable automation controllers (PACs) and human-machine interface (HMI) touch-screen panels.
Prerequisites: ES F307; Junior standing or senior standing in Mining, Geological, Civil, Mechanical, Petroleum, Electrical Engineering.
Lecture + Lab + Other: 1 + 3 + 0 Grading System: Letter Grades with option of Plus/Minus

MIN F601 Application of Artificial Neural Networks 3 Credits Offered As Demand Warrants Basic neural network architectures, including rules, training methods and practical applications. Training and application issues typical of earth sciences problems. Some topics require mathematical analysis. Genetic algorithms and use of network ensembles will be briefly presented.
Prerequisites: Graduate standing in engineering; programming ability; knowledge of MATLAB, a plus.
Recommended: MATH F253X, MATH F314, MIN F408; MIN F635.
Lecture + Lab + Other: 3 + 0 + 0 Grading System: Letter Grades with option of Plus/Minus

MIN F621 Advanced Mineral Economics 3 Credits Offered As Demand Warrants Introduction to options valuation of mineral projects; uncertainty and risk in mineral valuations; stochastic price models; dynamic programming and investment analysis; real options techniques.
Prerequisites: Admission by arrangement.
Lecture + Lab + Other: 3 + 0 + 0 Grading System: Letter Grades with option of Plus/Minus

MIN F631 Research Methods in Mineral Engineering 4 Credits Offered As Demand Warrants Research methods including problem definition and statement, designing experiments, collecting and interpreting data. Methods of theoretical and experimental analysis will be reviewed and examples given.
Prerequisites: Graduate standing.
Lecture + Lab + Other: 3 + 3 + 0 Grading System: Letter Grades with option of Plus/Minus

MIN F635 Advanced Geostatistical Applications 3 Credits Offered As Demand Warrants Introduction to the theory and application of geostatistics. Review of classical statistics, continuous and discrete distributions, hypothesis testing and global estimation. Presentation of fundamental geostatistical concepts including: variogram, estimation variance, block variance, kriging, geostatistical simulation. Emphasis on the practical application of geostatistical techniques.
Prerequisites: MIN F408; graduate standing.
Cross-listed with GE F635.
Lecture + Lab + Other: 2 + 3 + 0 Grading System: Letter Grades with option of Plus/Minus
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Offered As Demand Warrants</th>
<th>Description</th>
<th>Prerequisites</th>
<th>Lecture + Lab + Other</th>
<th>Grading System</th>
<th>Repeatable for Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN F637</td>
<td>Mine Systems Simulation</td>
<td>3</td>
<td></td>
<td>Application of computer simulation to the analysis of static and dynamic mine systems and the development of useful programs for mine operators. Design of simulation experiments in mining engineering.</td>
<td>Prerequisites: MIN F409; graduate standing.</td>
<td>2 + 3 + 0</td>
<td>Letter Grades with option of Plus/Minus</td>
<td></td>
</tr>
<tr>
<td>MIN F652</td>
<td>Numerical Methods in Mine Ventilation</td>
<td>3</td>
<td></td>
<td>Differencing schemes for the partial differential equations of flow in mine networks, typical boundary conditions for mine ventilation systems, computer-aided solution techniques. Application to flow of fluids through porous media is covered.</td>
<td>Prerequisites: MIN F302; graduate standing.</td>
<td>2 + 3 + 0</td>
<td>Letter Grades with option of Plus/Minus</td>
<td></td>
</tr>
<tr>
<td>MIN F673</td>
<td>Advanced Rock Mechanics</td>
<td>3</td>
<td></td>
<td>The study of theoretical and experimental methods in rock mechanics. State of stress and potential failure zone around two- and three-dimensional structures in rock based on theoretical, numerical and experimental techniques and failure criteria are presented.</td>
<td>Prerequisites: MIN F370; graduate standing.</td>
<td>2 + 3 + 0</td>
<td>Letter Grades with option of Plus/Minus</td>
<td></td>
</tr>
<tr>
<td>MIN F674</td>
<td>Advanced Ground Control</td>
<td>3</td>
<td></td>
<td>A study of current rock mechanic problems related to advances in mining and construction technologies. Particular emphasis on the importance of rock and frozen ground properties and stress evaluation in designing and monitoring stability of structures for gas, oil and radioactive materials storage, geothermal energy recovery, solution mining, and those.</td>
<td>Prerequisites: MIN F370.</td>
<td>0 + 0 + 0</td>
<td>Letter Grades with option of Plus/Minus</td>
<td></td>
</tr>
<tr>
<td>MIN F682</td>
<td>Computer-aided Mine Design:VULCAN</td>
<td>3</td>
<td></td>
<td>Familiarization w/VULCAN mine design software to store, manage, model, display exploration data. Estimate volume, tonnage and quality of reserve, design declines and development drives in underground and surface coal and hardrock mines, design underground and surface coal mine plans and design of underground stopes, perform underground and surface grade control.</td>
<td>Prerequisites: Graduate standing in Mining Engineering or Geological Engineering.</td>
<td>2 + 3 + 0</td>
<td>Letter Grades with option of Plus/Minus</td>
<td></td>
</tr>
<tr>
<td>MIN F688</td>
<td>Graduate Seminar I</td>
<td>1</td>
<td></td>
<td>Preparation and presentation of research outlines by graduate students and participation in regularly organized mineral engineering department seminars.</td>
<td>Prerequisites: Admission to graduate program.</td>
<td>1 + 0 + 0</td>
<td>Letter Grades with option of Plus/Minus</td>
<td></td>
</tr>
<tr>
<td>MIN F698</td>
<td>Non-thesis Research/Project</td>
<td>1-9</td>
<td></td>
<td></td>
<td></td>
<td>0 + 0 + 0</td>
<td>Pass/Fail Grades</td>
<td>May be taken unlimited times for up to 99 credits</td>
</tr>
<tr>
<td>MIN F699</td>
<td>Thesis</td>
<td>1-9</td>
<td></td>
<td></td>
<td></td>
<td>0 + 0 + 0</td>
<td>Pass/Fail Grades</td>
<td>May be taken unlimited times for up to 99 credits</td>
</tr>
</tbody>
</table>