MINING ENGINEERING (MIN)

MIN F101  Minerals, Man and the Environment
3 Credits
A general survey of the impact of the mineral industries on man's economic, political and environmental systems.
Lecture + Lab + Other: 3 + 0 + 0

MIN F103  Introduction to Mining Engineering
1 Credit
Concepts and methods utilized in mining engineering and mining unit operations.
Lecture + Lab + Other: 1 + 0 + 0

MIN F104  Mining Safety and Operations Laboratory
1 Credit
Prerequisites: MATH F151X, MATH F152X.
Prerequisites: MATH F151X.
Lecture + Lab + Other: 2 + 3 + 0

MIN F202  Mine Surveying
3 Credits
Offered Fall
Surveying principles for surface and underground control of mining properties. Field and office procedures for preparation of maps and engineering data.
Prerequisites: MATH F151X, MATH F152X.
Lecture + Lab + Other: 2 + 3 + 0

MIN F225  Quantitative Methods in Mining Engineering
2 Credits
Offered Fall
Introduction to ore reserve estimation, classical estimation methods and techniques, error in estimations and pitfalls, introduction to classical statistics, introduction to geostatistics, ordinary kriging, block kriging, modeling the sample variogram, co-kriging and global estimation.
Prerequisites: MATH F251X.
Lecture + Lab + Other: 2 + 0 + 0

MIN F226  Mine Development
2 Credits
Offered Spring
Review of pre-mining activities. Access to mining property, haul road location and design. Access to ore body; shaft, slope and ramp locations; shape, sizing and development. Development of access in frozen ground environments. Layout of development mains, cross-cuts, raises and winzes for ventilation, transport and optimum extraction of ore body. Level intervals, size and location of ore passes, design and optimization.
Prerequisites: MIN F103; MIN F225.
Recommended: MATH F251X.
Lecture + Lab + Other: 2 + 0 + 0

MIN F301  Mine Plant Design
3 Credits
Quantitative study and design of various systems and equipment used in haulage, hoisting, drainage, pumping and power (compressed air and electricity). Importance of the natural conditions and production level in the equipment selection procedure emphasized.
Prerequisites: ES F208 and ES F307.
Prerequisites: ES F341.
Recommended: ES F341.
Lecture + Lab + Other: 3 + 0 + 0

MIN F302  Underground Mine Environmental Engineering
3 Credits
Analysis of underground mine ventilation systems, ventilation planning, design and engineering control, mine ventilation network.
Prerequisites: MIN F103; MIN F226; ES F341.
Lecture + Lab + Other: 2 + 3 + 0

MIN F313  Introduction to Mineral Preparation
3 Credits
Offered Fall Odd-numbered Years
Elementary theory and principles of unit processes of liberation, concentration and solid-fluid separation as applied to mineral beneficiations.
Prerequisites: Junior standing.
Lecture + Lab + Other: 2 + 3 + 0

MIN F370  Rock Mechanics
3 Credits
Prerequisites: GEOS F332.
Lecture + Lab + Other: 2 + 3 + 0

MIN F380  Computer Aided Orebody Modeling
1 Credit
Offered Fall
Develops a orebody model from drillhole data in a computer aided design environment. The data is converted into a drillhole database, following which, a 3D visual model is developed. Basic tools covered include concepts of computer aided design, database error checking and triangulation.
Prerequisites: ES F331.
Lecture + Lab + Other: 2 + 3 + 0

MIN F401  Mine Site Field Trips
1 Credit
Field trips to active surface and underground mines to gain perceptual knowledge of modern mining systems by observation. Includes a systematic summarization and analysis of the mine after each visit to gain an in-depth understanding of mining engineering principles.
Prerequisites: MIN F202; MIN F301; MIN F302; MIN F370.
Lecture + Lab + Other: 0.5 + 3 + 0

MIN F407  Mine Reclamation and Environmental Management
(W)
3 Credits
Offered Fall Even-numbered Years
Principles and practices of mine reclamation and waste disposal. Pre-mining assessments and plans. Design of settling and tailings ponds and waste impoundments. Stream bed restoration and revegetation.
Prerequisites: CHEM F106X; WRTG F111X; WRTG F211X, WRTG F212X, WRTG F213X or WRTG F214X.
Recommended: ES F341.
Lecture + Lab + Other: 3 + 0 + 0

MIN F408  Mineral Valuation and Economics
3 Credits
Introduction to engineering economics, ore sampling and reserve calculations, and mine feasibility studies.
Prerequisites: COJO F131X or COJO F141X; GE F375 or MIN F301.
Lecture + Lab + Other: 3 + 0 + 0
MIN F409  Operations Research and Computer Applications in Mineral Industry
3 Credits
Fundamental concepts of probability and statistics and the use of operations research and computer techniques for understanding, analysis, forecasting and optimization of mining operations and systems.
Prerequisites: MIN F225; MIN F454.
Lecture + Lab + Other: 3 + 0 + 0

MIN F415  Coal Preparation
3 Credits
Unit operations, flowsheets, washability characteristics and control by sink-float methods for coal preparation plants. Market requirements and economics of preparation.
Prerequisites: MIN F313 or graduate standing.
Lecture + Lab + Other: 2 + 3 + 0

MIN F433  Principles and Applications of Industrial Explosives
3 Credits
Types and properties of industrial explosives; systems of initiation; theories of blasting; designs of open pit bench blasting; designs of underground blasting/rounds; applications in mining, civil construction and other fields; blasting vibration, structural damage and their control; overbreak control; safe practices; safety regulations; blast hole drilling and drilling equipment.
Prerequisites: MIN F370.
Lecture + Lab + Other: 3 + 0 + 0

MIN F444  Accidents, Emergency and Safety Management in Mines
3 Credits
Offered Alternate Fall
Accident statistics, accident investigation and prevention, major provisions of current laws, rule-making procedures, mine fires and explosions, causes and prevention, loss control principles and methods, emergency evacuation, emergency response and emergency preparedness, safety management systems and behavioral science applications.
Prerequisites: MIN F302.
Corequisites: MIN F454.
Lecture + Lab + Other: 3 + 0 + 0

MIN F454  Underground Mining Methods
3 Credits
Underground mining methods for coal and non-coal deposits. Includes design parameters, selection of mining methods, mine planning process, auxiliary operations and various underground mining methods.
Prerequisites: MIN F301; MIN F302; MIN F370.
Lecture + Lab + Other: 3 + 0 + 0

MIN F482  Computer-aided Mine Design: VULCAN
3 Credits
Offered Fall
Familiarization with VULCAN mine design software to store, manage, model and display exploration data. Estimate volume, tonnage and quality of reserve, design declines and development drives in underground and surface coal and hardrock mines, design underground and surface coal mine plans and design of underground stopes, perform underground and surface grade control.
Prerequisites: Junior, senior or graduate standing in Mining Engineering, Geological Engineering.
Stacked with MIN F682.
Lecture + Lab + Other: 2 + 3 + 0

MIN F484  Surface Mining Methods
2 Credits
Offered Spring Even-numbered Years
Modern methods of surface mine design. Strip and open pit optimization techniques. Production planning and scheduling. Use of mine design software.
Prerequisites: MIN F225; MIN F226; Junior or senior standing in mining engineering.
Lecture + Lab + Other: 2 + 0 + 0

MIN F495  Mining Engineering Exit Interview
0 Credit
An Exit interview will be conducted to obtain feedback on the program.
Prerequisites: Senior standing in mining engineering.
Corequisites: MIN F490.
Lecture + Lab + Other: 0 + 0 + 0

MIN F499  Mining Design Project I
1 Credit
Offered Fall
This course is a pre-cursor to MIN F490. The student is expected to meet with the instructor to finalize the senior design project topic, lay out a project plan, gather data and prepare as necessary for the successful execution of the project in MIN F490. Note: Both MIN F489 and MIN F490 must be completed to fulfill the writing intensive requirement.
Prerequisites: WRTG F111X; WRTG F211X, WRTG F212X, WRTG F213X or WRTG F214X; MIN F301; MIN F302; MIN F370.
Lecture + Lab + Other: 1 + 0 + 0

MIN F500  Application of Artificial Neural Networks
3 Credits
Basic neural network architectures, including rules, training methods and practical applications. Training and application issues typical of earth sciences problems. Some topics require mathematical analysis. Genetic algorithms and use of network ensembles will be briefly presented.
Prerequisites: Graduate standing in engineering; programming ability; knowledge of MATLAB, a plus.
Recommended: MATH F253X, MATH F314; MIN F408; MIN F635.
Lecture + Lab + Other: 1 + 4 + 0

MIN F501  Application of Artificial Neural Networks
3 Credits
Basic neural network architectures, including rules, training methods and practical applications. Training and application issues typical of earth sciences problems. Some topics require mathematical analysis. Genetic algorithms and use of network ensembles will be briefly presented.
Prerequisites: Graduate standing in engineering; programming ability; knowledge of MATLAB, a plus.
Recommended: MATH F253X, MATH F314; MIN F408; MIN F635.
Lecture + Lab + Other: 1 + 4 + 0

MIN F503  Surface Mining Methods
2 Credits
Offered Spring
Modern methods of surface mine design. Strip and open pit optimization techniques. Production planning and scheduling. Use of mine design software.
Prerequisites: MIN F225; MIN F226; Junior or senior standing in mining engineering.
Lecture + Lab + Other: 2 + 0 + 0

MIN F505  Mining Engineering Exit Interview
0 Credit
An Exit interview will be conducted to obtain feedback on the program.
Prerequisites: Senior standing in mining engineering.
Corequisites: MIN F490.
Lecture + Lab + Other: 0 + 0 + 0

MIN F509  Mining Design Project II (W)
2 Credits
Offered Spring
Design of mine layout including extraction and beneficiation, and economic evaluation of a mining project. A comprehensive written report of the design and analysis is required. Note: Both MIN F489 and MIN F490 must be completed to fulfill the writing intensive requirement.
Prerequisites: WRTG F111X; WRTG F211X, WRTG F212X, WRTG F213X or WRTG F214X; MIN F301; MIN F302; MIN F370; MIN F454; MIN F489.
Lecture + Lab + Other: 1 + 4 + 0

MIN F501  Application of Artificial Neural Networks
3 Credits
Basic neural network architectures, including rules, training methods and practical applications. Training and application issues typical of earth sciences problems. Some topics require mathematical analysis. Genetic algorithms and use of network ensembles will be briefly presented.
Prerequisites: Graduate standing in engineering; programming ability; knowledge of MATLAB, a plus.
Recommended: MATH F253X, MATH F314; MIN F408; MIN F635.
Lecture + Lab + Other: 1 + 4 + 0

MIN F621  Advanced Mineral Economics
3 Credits
Introduction to options valuation of mineral projects; uncertainty and risk in mineral valuations; stochastic price models; dynamic programming and investment analysis; real options techniques.
Prerequisites: Admission by arrangement.
Lecture + Lab + Other: 3 + 0 + 0
MIN F631  Research Methods in Mineral Engineering  4 Credits
Research methods including problem definition and statement, designing
experiments, collecting and interpreting data. Methods of theoretical and
experimental analysis will be reviewed and examples given.
Prerequisites: Graduate standing.
Lecture + Lab + Other: 3 + 3 + 0

MIN F635  Advanced Geostatistical Applications  3 Credits
Offered Spring
Introduction to the theory and application of geostatistics. Review of
classical statistics, continuous and discrete distributions, hypothesis
testing and global estimation. Presentation of fundamental geostatistical
concepts including: variogram, estimation variance, block variance,
kriging, geostatistical simulation. Emphasis on the practical application
of geostatistical techniques.
Prerequisites: MIN F408; graduate standing.
Cross-listed with GE F635.
Lecture + Lab + Other: 2 + 3 + 0

MIN F637  Mine Systems Simulation  3 Credits
Application of computer simulation to the analysis of static and dynamic
mine systems and the development of useful programs for mine
operators. Design of simulation experiments in mining engineering.
Prerequisites: MIN F409; graduate standing.
Lecture + Lab + Other: 2 + 3 + 0

MIN F652  Numerical Methods in Mine Ventilation  3 Credits
Differencing schemes for the partial differential equations of flow in
mine networks, typical boundary conditions for mine ventilation systems,
computer-aided solution techniques. Application to flow of fluids through
porous media is covered.
Prerequisites: MIN F302; graduate standing.
Lecture + Lab + Other: 2 + 3 + 0

MIN F673  Advanced Rock Mechanics  3 Credits
The study of theoretical and experimental methods in rock mechanics.
State of stress and potential failure zone around two- and three-
dimensional structures in rock based on theoretical, numerical and
experimental techniques and failure criteria are presented.
Prerequisites: MIN F370; graduate standing.
Lecture + Lab + Other: 2 + 3 + 0

MIN F674  Advanced Ground Control  3 Credits
A study of current rock mechanic problems related to advances in mining
and construction technologies. Particular emphasis on the importance of
rock and frozen ground properties and stress evaluation in designing and
monitoring stability of structures for gas, oil and radioactive materials
storage, geothermal energy recovery, solution mining, and those exposed
to rock outbursts and earthquakes. Rock and frozen ground properties
related to other dynamic loading conditions, such as in blasting, are also
discussed.
Prerequisites: MIN F370.
Lecture + Lab + Other: 0 + 0 + 0

MIN F682  Computer-aided Mine Design: VULCAN  3 Credits
Offered Fall
Familiarization with VULCAN mine design software to store, manage,
model and display exploration data. Estimate volume, tonnage
and quality of reserve, design declines and development drives in
underground and surface coal and hardrock mines, design underground
and surface coal mine plans and design of underground stopes, perform
underground and surface grade control.
Prerequisites: Graduate standing in Mining Engineering or Geological
Engineering.
Stacked with MIN F482.
Lecture + Lab + Other: 2 + 3 + 0

MIN F688  Graduate Seminar I  1 Credit
Preparation and presentation of research outlines by graduate students
and participation in regularly organized mineral engineering department
seminars.
Prerequisites: Admission to graduate program.
Cross-listed with MPR F688.
Lecture + Lab + Other: 1 + 0 + 0

MIN F698  Non-thesis Research/Project  1-9 Credits
Lecture + Lab + Other: 0 + 0 + 0

MIN F699  Thesis  1-9 Credits
Lecture + Lab + Other: 0 + 0 + 0