MECHANICAL ENGINEERING (ME)

ME F302 Dynamics of Machinery
4 Credits
Offered Fall
Kinematics and dynamics of mechanisms. Analysis of displacements, velocities, accelerations, and forces in linkages, cams and gear systems by analytical, experimental and computer methods. Design applications.
Prerequisites: ES F331 (may be taken concurrently); ES F210.
Lecture + Lab + Other: 3 + 3 + 0

ME F308 Instrumentation and Measurement
3 Credits
Offered Spring
Principles of measurement, instrumentation, Laplace transform, Fourier series, transfer function, steady-state response, calibration, and errors. Signal filtering and amplification, data acquisition, recording, and processing. Methods and devices for measuring strain, force, torque, displacement, velocity, acceleration, pressure, fluid flow properties, and temperature. Mechatronics, sensors, actuators, and controls.
Prerequisites: ES F331.
Lecture + Lab + Other: 3 + 3 + 0

ME F313 Mechanical Engineering Thermodynamics
3 Credits
Offered Spring
Investigation and design of power and refrigeration cycles (Rankine, Brayton, Otto, and Diesel), compressible flow (isentropic, shock waves, and flow in ducts with friction), and combustion and gas vapor mixtures.
Prerequisites: ES F346.
Lecture + Lab + Other: 3 + 0 + 0

ME F321 Industrial Processes
3 Credits
Offered Fall
Manufacturing processes used in modern industry. Primary and secondary manufacturing processes, casting, hot and cold forming, machining, welding and mass and efficient product design.
Prerequisites: Mechanical Engineering major.
Lecture + Lab + Other: 3 + 0 + 0

ME F334 Elements of Material Science/Engineering
3 Credits
Offered Spring
Properties of engineering materials. Crystal structure, defect structure, structure and properties, aspects of metal processing, heat treatment, joining, testing and failure analysis for engineering applications and design.
Prerequisites: CHEM F105X.
Lecture + Lab + Other: 2 + 3 + 0

ME F402 Advanced Mechanical System Design
3 Credits
Offered As Demand Warrants
Advanced analysis of two- and three-dimensional multi-body mechanical systems. Rigid body system formulation and deformable body system formulation. Application of CAE software for rigid body and large deformable body systems.
Prerequisites: ME F302; ME F408.
Stacked with ME F602.
Lecture + Lab + Other: 3 + 0 + 0

ME F403 Machine Design
3 Credits
Offered Spring
Design and analysis of machines by analytical, experimental and computer methods. Identification of requirements and conceptual design of mechanical systems, detailed design of components, strength, life, reliability, and cost analysis.
Prerequisites: ES F331.
Lecture + Lab + Other: 3 + 0 + 0

ME F405 Computer Aided Design
3 Credits
Offered As Demand Warrants
Introduction to principles of computer aided design and engineering. Applications of software and hardware in solid modeling, design analysis, motion analysis, rapid prototyping, and interface between computer aided design and computer aided manufacturing.
Prerequisites: Senior standing.
Lecture + Lab + Other: 1.5 + 4.5 + 0

ME F406 Computer Aided Manufacturing
3 Credits
Offered As Demand Warrants
Introduction to computer aided manufacturing (CAM). This includes the principles of computer aided process planning (CAPP) and an introduction to computer numerical control (CNC) tools used in manufacturing. Emphasis will be on methodology with hands-on applications of computer software and specific machine tools.
Prerequisites: ME F321; senior standing.
Lecture + Lab + Other: 1.5 + 4.5 + 0

ME F408 Mechanical Vibrations
3 Credits
Offered Fall
Modeling of vibratory mechanical systems with single and multiple degrees of freedom. Study of free and forced vibrations with or without damping by lumped-parameter methods and finite element analysis. Vibrations of rotor systems and vibration stability.
Prerequisites: ES F210, ES F301.
Lecture + Lab + Other: 3 + 0 + 0

ME F409 Controls
3 Credits
Offered As Demand Warrants
Analysis and design of control systems. Block diagrams, transfer functions and frequency analysis. Closed loop systems and system stability. Industrial controllers and system compensation.
Prerequisites: ME F408.
Lecture + Lab + Other: 3 + 0 + 0

ME F414 HVAC Systems Optimization (a)
3 Credits
Offered As Demand Warrants
Design of thermal and heating, ventilation, and air-conditioning (HVAC) systems with emphasis on economic considerations and optimization. Concepts of thermodynamics, fluid mechanics and heat transfer will be integrated under a design framework. A semester long project is conducted to design a thermal system, perform system simulations, and to optimize the design based on economic and technical considerations.
Prerequisites: ES F341; ES F346.
Lecture + Lab + Other: 3 + 0 + 0

(a) credit applied towards Allied Coursework
ME F415 Thermal Systems Laboratory (W) 3 Credits Offered Spring Testing and evaluation of components and energy systems such as pumps, fans, engines, heat exchangers, refrigerators and heating/power plants.
Prerequisites: ME F308 (may be taken concurrently); WRTG F111X; ES F341; ME F313; ME F441.
Lecture + Lab + Other: 1.5 + 4.5 + 0

ME F416 Design of Mechanical Equipment for the Petroleum Industry (a) 3 Credits Offered As Demand Warrants Design, selection and operation of equipment used in production and processing of crude oil and gas. Instrumentation and control systems used with mechanical equipment.
Prerequisites: ES F341; ES F346.
Lecture + Lab + Other: 3 + 0 + 0

ME F440 Introduction to Microfluidics 3 Credits Offered As Demand Warrants Overview of basic concepts and principles of fluids at the micron scale; introduction to the design and fabrication of microfluidic devices.
Prerequisites: ES F341 (may be taken concurrently); PHYS F123X (for Math and non-Physics science major); PHYS F211X (for Engineering, Math and Physics major); junior standing.
Stacked with ME F640.
Lecture + Lab + Other: 3 + 0 + 0

ME F441 Heat and Mass Transfer 3 Credits Offered Fall Application of heat and mass transfer concepts to engineering problems including steady state and transient conduction, numerical analysis of heat transfer problems, laminar and turbulent free and forced convection, and black body and real surface radiation.
Prerequisites: ES F301; ES F341; ES F346.
Lecture + Lab + Other: 3 + 0 + 0

Prerequisites: ES F341; ME F441; senior standing.
Stacked with ME F643.
Lecture + Lab + Other: 3 + 0 + 0

ME F451 Aerodynamics 3 Credits Offered Spring Aerodynamics of non-lifting and lifting airfoils in incompressible irrotational flow, wings of finite span, the Navier-Stokes equations, boundary layers, numerical methods, supersonic and transonic flow past airfoils, rocket aerodynamics, rocket drag.
Prerequisites: ES F341 (may be taken concurrently); ES F301; ES F346.
Lecture + Lab + Other: 3 + 0 + 0

ME F452 Introduction to Astrodynamics 3 Credits Offered Fall Geometry of the solar system, detailed analysis of two-body dynamics and introduction to artificial satellite orbits; Hohmann transfer and patched conics for lunar and interplanetary trajectories. Elements of orbit determination.
Prerequisites: ES F208 or ES F210.
Corequisites: ES F301.
Lecture + Lab + Other: 3 + 0 + 0

Prerequisites: ME F313 (may be taken concurrently); ES F341.
Lecture + Lab + Other: 3 + 0 + 0

ME F458 Energy and the Environment 3 Credits Offered As Demand Warrants Overview of basic concepts of energy supply, demand, production of heat and power impacts of energy use on the environment. Extensive discussion of mitigation technologies and strategies for meeting energy needs while preserving environmental quality.
Prerequisites: CHEM F106X; ES F346 or equivalent; MATH F252X; PHYS F211X.
Stacked with ME F658.
Lecture + Lab + Other: 3 + 0 + 0

ME F464 Corrosion Engineering 3 Credits Offered As Demand Warrants Principles and forms of corrosion and factors that affect it. Methods of testing and measurement, control and prevention are examined.
Prerequisites: ME F334.
Lecture + Lab + Other: 3 + 0 + 0
Lecture + Lab + Other:

Applications to engineering problems.

Prerequisites: ME F411; WRTG F211X, WRTG F212X, WRTG F213X or WRTG F214X; senior standing.
Lecture + Lab + Other: 2 + 0 + 0

ME F417 Advanced Vibrations
3 Credits
Offered As Demand Warrants
Theories of elasticity and plasticity for small and large deformations. Applications to engineering problems.
Prerequisites: ME F313; graduate standing in engineering.
Lecture + Lab + Other: 3 + 0 + 0

ME F425 Advanced Fluid Mechanics
3 Credits
Offered As Demand Warrants
Introduction to viscous flows, laminar boundary layers, turbulent boundary layers, turbulent jets and wakes, applications to heat transfer and drag.
Prerequisites: ES F341; graduate standing in engineering.
Lecture + Lab + Other: 3 + 0 + 0

ME F426 Advanced Heat Transfer
3 Credits
Offered As Demand Warrants
Heat conduction in two and three dimensions under steady and transient conditions. Free and forced convection in internal and external flows. Radiation from black and gray surfaces and gas-filled enclosures. Both analytical and numerical methods are covered.
Prerequisites: ME F441; graduate standing in engineering.
Lecture + Lab + Other: 3 + 0 + 0
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Offered As Demand Warrants</th>
<th>Description</th>
<th>Prerequisites:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME F643</td>
<td>Fluid Mechanics and Heat Transfer Characteristics of Nanofluids</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Offered As Demand Warrants</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description of nanofluids, nanostructured materials and dispersion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>in base fluids. Thermophysical properties: density, viscosity, thermal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>conductivity and specific heat. Theoretical equations and empirical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>correlations for properties. Principles of measurements of properties.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluid dynamic losses and pumping power required for nanofluid flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>in heat transfer systems. Experimental methods of determining the</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>convective heat transfer coefficient of nanofluids. Practical application</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to heat exchangers in industries. Nanofluids flows in mini- and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>microchannels.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites: ES F341; ME F441; graduate standing.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stacked with ME F443.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture + Lab + Other: 3 + 0 + 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME F656</td>
<td>Aerospace Systems Engineering</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Offered Fall Odd-numbered Years</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A multidisciplinary team of students will perform a preliminary design</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>study of a major aerospace system. Design considerations will include</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>requirements for project management, aerospace vehicle design, power,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>attitude control, thermal control, communications, computer control and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>data handling. The students will present their final design in a written</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>report and a public seminar.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites: Graduate standing.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cross-listed with EE F656.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME F658</td>
<td>Energy and the Environment</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Offered As Demand Warrants</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basic concepts of energy supply, demand, production of heat and power</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>impacts of energy use on the environment. Extensive discussion of</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mitigation technologies and strategies for meeting energy needs while</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>preserving environmental quality.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recommended: CHEM F106X; ES F346; MATH F252X; PHYS F211X;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>graduate standing.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stacked with ME F458.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture + Lab + Other: 3 + 0 + 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME F685</td>
<td>Arctic Heat and Mass Transfer (a)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Offered As Demand Warrants</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>An introduction to the principles of heat and mass transfer with special</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>emphasis on application to problems encountered in the Arctic such as</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ice and frost formation, permafrost, condensation and heat loss in</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>structures.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites: graduate standing.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture + Lab + Other: 3 + 0 + 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME F687</td>
<td>Arctic Materials Engineering (a)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Offered As Demand Warrants</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A study of engineering material performance at low temperatures.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites: Graduate standing.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture + Lab + Other: 3 + 0 + 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME F698</td>
<td>Non-thesis Research/Project</td>
<td>1-9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture + Lab + Other: 0 + 0 + 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME F699</td>
<td>Thesis</td>
<td>1-9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lecture + Lab + Other: 0 + 0 + 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>