ME F302 Dynamics of Machinery
4 Credits
Offered Fall
Kinematics and dynamics of mechanisms. Analysis of displacements, velocities, accelerations, and forces in linkages, cams and gear systems by analytical, experimental and computer methods. Design applications.
Prerequisites: ES F301 (may be taken concurrently); ES F210.
Lecture + Lab + Other: 3 + 3 + 0

ME F308 Instrumentation and Measurement
3 Credits
Offered Spring
Principles of measurement, instrumentation, Laplace transform, Fourier series, transfer function, steady-state response, calibration, and errors. Signal filtering and amplification, data acquisition, recording, and processing. Methods and devices for measuring strain, force, torque, displacement, velocity, acceleration, pressure, fluid flow properties, and temperature. Mechatronics, sensors, actuators, and controls.
Prerequisites: ES F331.
Lecture + Lab + Other: 2 + 3 + 0

ME F313 Mechanical Engineering Thermodynamics
3 Credits
Offered Spring
Investigation and design of power and refrigeration cycles (Rankine, Brayton, Otto, and Diesel), compressible flow (isentropic, shock waves, and flow in ducts with friction), and combustion and gas vapor mixtures.
Prerequisites: ES F346.
Lecture + Lab + Other: 3 + 0 + 0

ME F321 Industrial Processes
3 Credits
Offered Fall
Manufacturing processes used in modern industry. Primary and secondary manufacturing processes, casting, hot and cold forming, machining, welding and mass and efficient product design.
Prerequisites: Mechanical Engineering major.
Lecture + Lab + Other: 2 + 3 + 0

ME F334 Elements of Material Science/Engineering
3 Credits
Offered Spring
Properties of engineering materials. Crystal structure, defect structure, structure and properties, aspects of metal processing, heat treatment, joining, testing and failure analysis for engineering applications and design.
Prerequisites: CHEM F105X and PHYS F212X.
Lecture + Lab + Other: 2 + 3 + 0

ME F402 Advanced Mechanical System Design
3 Credits
Offered As Demand Warrants
Advanced analysis of two- and three-dimensional multi-body mechanical systems. Rigid body system formulation and deformable body system formulation. Application of CAE software for rigid body and large deformable body systems.
Prerequisites: ME F302; ME F408.
Stacked with ME F602.
Lecture + Lab + Other: 3 + 0 + 0

ME F403 Machine Design
3 Credits
Offered Spring
Design and analysis of machines by analytical, experimental and computer methods. Identification of requirements and conceptual design of mechanical systems, detailed design of components, strength, life, reliability, and cost analysis.
Prerequisites: ES F331.
Lecture + Lab + Other: 3 + 0 + 0

ME F405 Computer Aided Design
3 Credits
Offered Every Other Fall
Introduction to principles of computer aided design and engineering. Applications of software and hardware in solid modeling, design analysis, motion analysis, rapid prototyping, and interface between computer aided design and computer aided manufacturing.
Prerequisites: Senior standing.
Lecture + Lab + Other: 1.5 + 4.5 + 0

ME F406 Computer Aided Manufacturing
3 Credits
Offered Every Other Spring
Introduction to computer aided manufacturing (CAM). This includes the principles of computer aided process planning (CAPP) and an introduction to computer numerical control (CNC) tools used in manufacturing. Emphasis will be on methodology with hands-on applications of computer software and specific machine tools.
Prerequisites: ME F321; senior standing.
Lecture + Lab + Other: 1.5 + 4.5 + 0

ME F408 Mechanical Vibrations
3 Credits
Offered Fall
Modeling of vibratory mechanical systems with single and multiple degrees of freedom. Study of free and forced vibrations with or without damping by lumped-parameter methods and finite element analysis. Vibrations of rotor systems and vibration stability.
Prerequisites: ES F210, ES F301.
Lecture + Lab + Other: 3 + 0 + 0

ME F409 Controls
3 Credits
Offered As Demand Warrants
Analysis and design of control systems. Block diagrams, transfer functions and frequency analysis. Closed loop systems and system stability. Industrial controllers and system compensation.
Prerequisites: ES F301.
Lecture + Lab + Other: 3 + 0 + 0

ME F414 HVAC Systems Optimization (a)
3 Credits
Offered As Demand Warrants
Design of thermal and heating, ventilation, and air-conditioning (HVAC) systems with emphasis on economic considerations and optimization. Concepts of thermodynamics, fluid mechanics and heat transfer will be integrated under a design framework. A semester long project is conducted to design a thermal system, perform system simulations, and to optimize the design based on economic and technical considerations.
Prerequisites: ES F341; ES F346.
Lecture + Lab + Other: 3 + 0 + 0
ME F415 Thermal Systems Laboratory (W)
3 Credits
Offered Spring
Testing and evaluation of components and energy systems such as pumps, fans, engines, heat exchangers, refrigerators and heating/power plants.
Prerequisites: ME F308 (may be taken concurrently); WRTG F111X; ES F341; ME F313; ME F441.
Lecture + Lab + Other: 1.5 + 4.5 + 0

ME F416 Design of Mechanical Equipment for the Petroleum Industry (a)
3 Credits
Offered Fall
Design, selection and operation of equipment used in production and processing of crude oil and gas. Instrumentation and control systems used with mechanical equipment.
Prerequisites: ES F341; ES F346.
Lecture + Lab + Other: 3 + 0 + 0

ME F440 Introduction to Microfluidics
3 Credits
Offered Spring Odd-numbered Years
Overview of basic concepts and principles of fluids at the micron scale; introduction to the design and fabrication of microfluidic devices.
Prerequisites: ES F341 (may be taken concurrently); PHYS F103X (for Math and non-Physics science major); PHYS F211X (for Engineering, Math and Physics major); junior standing.
Stacked with ME F640.
Lecture + Lab + Other: 3 + 0 + 0

ME F441 Heat and Mass Transfer
3 Credits
Offered Fall
Application of heat and mass transfer concepts to engineering problems including steady state and transient conduction, numerical analysis of heat transfer problems, laminar and turbulent free and forced convection, and black body and real surface radiation.
Prerequisites: ES F301; ES F341; ES F346.
Lecture + Lab + Other: 3 + 0 + 0

ME F443 Fluid Mechanics and Heat Transfer Characteristics of Nanofluids
3 Credits
Offered As Demand Warrants
Prerequisites: ES F341; ME F441; senior standing.
Stacked with ME F643.
Lecture + Lab + Other: 3 + 0 + 0

ME F450 Theory of Flight
3 Credits
Offered Fall Even-numbered Years
Airfoil theory in subsonic flow. Performance, stability and control of aircraft. Aircraft design.
Prerequisites: ES F341 (may be taken concurrently); ES F346.
Lecture + Lab + Other: 3 + 0 + 0
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit</th>
<th>Offered</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME F617</td>
<td>Power Analysis</td>
<td>3</td>
<td>As Demand Warrants</td>
<td>Fundamentals of power generation including piping, pumps, fuels and combustion, steam generators, condensers, deaerators, evaporators, feedwater treatment and heating, regeneration, fuel handling, heat balance, equipment, economics, and plant layout.</td>
</tr>
<tr>
<td>ME F631</td>
<td>Advanced Mechanics of Materials</td>
<td>3</td>
<td>Every Third Semester</td>
<td>Theories of elasticity and plasticity for small and large deformations. Applications to engineering problems.</td>
</tr>
<tr>
<td>ME F634</td>
<td>Advanced Materials Engineering</td>
<td>3</td>
<td>Every Third Semester</td>
<td>Atomic bonding, crystal structure, crystal imperfections, phases and interfaces, microstructures, phase diagrams, phase transformation, transport and diffusion, metal deformation, fracture of materials, deterioration of materials, electronic and physical properties of materials.</td>
</tr>
<tr>
<td>ME F640</td>
<td>Introduction to Microfluidics</td>
<td>3</td>
<td>Spring Odd-numbered Years</td>
<td>Overview of basic concepts and principles of fluids at the micron scale; introduction to the design and fabrication of microfluidic devices.</td>
</tr>
<tr>
<td>ME F641</td>
<td>Advanced Fluid Mechanics</td>
<td>3</td>
<td>Every Third Semester</td>
<td>Introduction to viscous flows, laminar boundary layers, turbulent boundary layers, turbulent jets and wakes, applications to heat transfer and drag.</td>
</tr>
<tr>
<td>ME F642</td>
<td>Advanced Heat Transfer</td>
<td>3</td>
<td>Every Third Semester</td>
<td>Heat conduction in two and three dimensions under steady and transient conditions. Free and forced convection in internal and external flows. Radiation from black and gray surfaces and gas-filled enclosures. Both analytical and numerical methods are covered.</td>
</tr>
<tr>
<td>ME F487</td>
<td>Design Project</td>
<td>(O, W)</td>
<td></td>
<td>A real or simulated engineering design project selected jointly by student and instructor. Emphasis on design of practical mechanical engineering systems and/or components which integrate students' engineering knowledge and skills.</td>
</tr>
<tr>
<td>ME F501</td>
<td>Finite Element Analysis in Engineering</td>
<td>3</td>
<td>Every Third Semester</td>
<td>Formulation of the finite element method. Applications to problems of engineering in solid mechanics, fluid mechanics and heat transfer. Use and development of codes for computer solution of problems.</td>
</tr>
<tr>
<td>ME F601</td>
<td>Advanced Mechanical System Design</td>
<td>3</td>
<td>As Demand Warrants</td>
<td>Advanced analysis of two- and three-dimensional multi-body mechanical systems. Rigid body system formulation and deformable body system formulation. Application of CAE software for rigid body and large deformable body systems.</td>
</tr>
<tr>
<td>ME F608</td>
<td>Advanced Dynamics</td>
<td>3</td>
<td>Every Third Semester</td>
<td>Kinematics and kinetics of rigid bodies, introduction to analytical mechanics, Lagrange's equations and Hamiltonian mechanics. Applications to engineering problems.</td>
</tr>
<tr>
<td>ME F609</td>
<td>Advanced Vibrations</td>
<td>3</td>
<td>Every Third Semester</td>
<td>Analysis of discrete and continuous vibrations via energy methods, free and forced response of linear systems, stability criteria, and introduction to random and nonlinear vibration. Applications to engineering problems.</td>
</tr>
</tbody>
</table>

Prerequisites:
- ME F441; graduate standing in engineering.
- Stacked with ME F402.
- ME F302; MATH F302.
- ME F302; MATH F302.
- ES F210; MATH F302; graduate standing in engineering.
- ES F210; MATH F302; graduate standing in engineering.
- ES F341 (may be taken concurrently); PHYS F103X (for Math and non-Physics science major); PHYS F211X (for Engineering, Math and Physics major); junior standing.
- ME F334; MATH F302; graduate standing in engineering.
- ME F313.
- ME F302; ME F408; graduate standing in engineering.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Offered</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME F656</td>
<td>Aerospace Systems Engineering</td>
<td>3</td>
<td>Fall Odd-numbered Years</td>
<td>A multidisciplinary team of students will perform a preliminary design study of a major aerospace system. Design considerations will include requirements for project management, aerospace vehicle design, power, attitude control, thermal control, communications, computer control and data handling. The students will present their final design in a written report and a public seminar. Prerequisites: Graduate standing. Cross-listed with EE F656.</td>
</tr>
<tr>
<td>ME F658</td>
<td>Energy and the Environment</td>
<td>3</td>
<td>Fall Odd-numbered Years</td>
<td>Basic concepts of energy supply, demand, production of heat and power impacts of energy use on the environment. Extensive discussion of mitigation technologies and strategies for meeting energy needs while preserving environmental quality. Recommended: CHEM F106X; ES F346; MATH F252X; PHYS F211X; graduate standing. Cross-listed with ENVE F658. Stacked with ME F458; ENVE F458.</td>
</tr>
<tr>
<td>ME F685</td>
<td>Arctic Heat and Mass Transfer</td>
<td>3</td>
<td>As Demand Warrants</td>
<td>An introduction to the principles of heat and mass transfer with special emphasis on application to problems encountered in the Arctic such as ice and frost formation, permafrost, condensation and heat loss in structures. Prerequisites: graduate standing.</td>
</tr>
<tr>
<td>ME F687</td>
<td>Arctic Materials Engineering</td>
<td>3</td>
<td>As Demand Warrants</td>
<td>A study of engineering material performance at low temperatures. Prerequisites: Graduate standing.</td>
</tr>
<tr>
<td>ME F698</td>
<td>Non-thesis Research/Project</td>
<td>1-9</td>
<td></td>
<td>Lecture + Lab + Other: 0 + 0 + 0</td>
</tr>
<tr>
<td>ME F699</td>
<td>Thesis</td>
<td>1-9</td>
<td></td>
<td>Lecture + Lab + Other: 0 + 0 + 0</td>
</tr>
</tbody>
</table>