<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
<th>Offered</th>
<th>Description</th>
<th>Prerequisites</th>
<th>Lecture + Lab + Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE F102</td>
<td>Introduction to Electrical and Computer Engineering</td>
<td>3</td>
<td>Spring</td>
<td>Basic modern devices, concepts, technical skills and instruments of electrical engineering.</td>
<td>MATH F251X (may be taken concurrently)</td>
<td>2 + 3 + 0</td>
</tr>
<tr>
<td>EE F203</td>
<td>Electric Circuits</td>
<td>4</td>
<td>Fall</td>
<td>Introduces DC and AC circuit analysis techniques including transient analysis, steady state analysis, three phase circuits and ideal amplifiers.</td>
<td>MATH F251X; MATH F252X (both MATH F251X and MATH F252X may be taken concurrently); EE F102.</td>
<td>3 + 3 + 0</td>
</tr>
<tr>
<td>EE F204</td>
<td>Electrical Engineering Fundamentals II</td>
<td>4</td>
<td>Spring</td>
<td>Electronics of solid state devices, amplifier design, digital circuits, electromechanics, control systems and instrumentation.</td>
<td>MATH F253X (may be taken concurrently); EE F203; MATH F252X.</td>
<td>3 + 3 + 0</td>
</tr>
<tr>
<td>EE F303</td>
<td>Electrical Machinery</td>
<td>4</td>
<td>Fall</td>
<td>Electromechanical energy conversion principles, characteristics and applications of transformers, synchronous and induction machines, DC machines, and special machines.</td>
<td>EE F204.</td>
<td>3 + 3 + 0</td>
</tr>
<tr>
<td>EE F311</td>
<td>Engineering Electromagnetics I</td>
<td>3</td>
<td>Fall</td>
<td>Electromagnetic theory and applications. Static electric fields in free space and material media; steady current systems and associated magnetic effects. Includes electrostatics, magnetostatics, Maxwell's equations, electromagnetic wave propagation, and transmission lines. Application of the wave equations to engineering systems.</td>
<td>MATH F302 (may be taken concurrently); EE F204; MATH F253X; PHYS F212X.</td>
<td>3 + 0 + 0</td>
</tr>
<tr>
<td>EE F331</td>
<td>High-frequency Lab</td>
<td>1</td>
<td>Fall</td>
<td>Laboratory experiments in transmission lines, impedances, bridges, scattering parameters, hybrids and waveguides.</td>
<td>EE F311.</td>
<td>0 + 3 + 0</td>
</tr>
<tr>
<td>EE F333</td>
<td>Electronic Devices</td>
<td>(W)</td>
<td>Fall</td>
<td>An introduction to the properties of semiconductors and the analysis of electronics and electrical devices including diodes, field effect transistors (FETs), bipolar junction transistors (BJTs). Large signal and small signal analysis techniques, and common electrical circuit topologies.</td>
<td></td>
<td>3 + 3 + 0</td>
</tr>
<tr>
<td>EE F334</td>
<td>Electronic Circuit Design</td>
<td>4</td>
<td>Fall</td>
<td>Application of semiconductor devices in circuit design in computation, automatic control and communication.</td>
<td>MATH F302.</td>
<td>3 + 3 + 0</td>
</tr>
<tr>
<td>EE F341</td>
<td>Digital and Computer Analysis and Design</td>
<td>4</td>
<td>Fall</td>
<td>Modular structure of computer systems. Analysis, design and implementation of combinational and sequential logic machines. Introduction to microprocessor architecture and microprocessor programming. Design with traditional and hardware description language techniques.</td>
<td>CS F201; one year of college physics.</td>
<td>3 + 3 + 0</td>
</tr>
<tr>
<td>EE F343</td>
<td>Digital Systems Analysis and Design</td>
<td>4</td>
<td>Fall</td>
<td>Fundamental principles and practices of digital design. Analysis, design and implementation of combinational and sequential logic machines. Introduction to microprocessor architecture and microprocessor programming. Analysis of digital data transmission techniques and microprocessor interfacing. Design with traditional and hardware description language techniques. Implementation with both medium and large scale integrated (M/LSI) chips and programmable logic devices (PLDs).</td>
<td>ES F201 or CS F201; EE F204; EE F333 (may be taken concurrently).</td>
<td>3 + 3 + 0</td>
</tr>
<tr>
<td>EE F353</td>
<td>Circuit Theory</td>
<td>3</td>
<td>Fall</td>
<td>Transfer functions, passive and active filters, Laplace transforms and applications, introduction to Fourier series and transforms and two port networks.</td>
<td>MATH F302.</td>
<td>3 + 0 + 0</td>
</tr>
<tr>
<td>EE F354</td>
<td>Engineering Signal Analysis</td>
<td>3</td>
<td>Spring</td>
<td>Analog signals and Fourier transformations. Discrete time signals and DFT. Probability theory and random variables. Random signals and noise.</td>
<td></td>
<td>3 + 0 + 0</td>
</tr>
</tbody>
</table>
EE F404 Electrical Power Systems
4 Credits
Offered Spring
Electrical power transmission and distribution systems, power flow, symmetrical faults, and economic dispatch with computer-aided analysis.
Prerequisites: EE F303.
Lecture + Lab + Other: 3 + 3 + 0
EE F406 Electrical Power Engineering
4 Credits
Offered Fall
Economic operation of power systems, symmetrical and unsymmetrical faults, power system protection, dynamic power system stability, and computer-aided fault and transient stability analysis.
Prerequisites: EE F404.
Lecture + Lab + Other: 3 + 3 + 0
EE F408 Power Electronics Design (O, W)
4 Credits
Offered Spring
Analysis and design of power electronic conversion, control and drive systems. Topics will include the theory and application of thyristors, rectifiers, DC-DC converters, inverters, resonant converters, AC and DC switches and regulators, power supplies, DC drives and adjustable-speed drives, including variable-frequency drives. Includes laboratory exercises using power electronic converter boards, PSPICE, and a complete power electronics design project.
Prerequisites: WRTG F111X; WRTG F211X, WRTG F212X, WRTG F213X or WRTG F214X; senior standing.
Stacked with EE F608.
Lecture + Lab + Other: 3 + 3 + 0
EE F412 Engineering Electromagnetics II
3 Credits
Use of Maxwell’s equations in analysis of plane wave propagation, wave reflection, radiation and antennas, waveguides, cavity resonators, transmission lines and radio propagation.
Prerequisites: EE F311; EE F331; MATH F302.
Lecture + Lab + Other: 3 + 0 + 0
EE F432 Electromagnetics Laboratory
1 Credit
Laboratory experiments with microwave sources, propagating electromagnetic waves, waveguides and antennas. Design, construction and testing of antenna systems.
Corequisites: EE F412.
Lecture + Lab + Other: 0 + 3 + 0
EE F443 Computer Engineering Analysis and Design
4 Credits
Offered Spring
Advanced digital design, and principles and practices of computer engineering. Analysis and design of computer architecture and organization. Digital signal processing techniques and hardware. Microprocessor operation, control and interfacing. Design with traditional and hardware description language techniques. Implementation with both medium and large scale integrated (M/LSI) chips and programmable logic devices (PLDs).
Prerequisites: EE F341 or EE F343.
Lecture + Lab + Other: 3 + 3 + 0
EE F444 Embedded Systems Design (O, W)
4 Credits
Offered Spring
Issues surrounding the design and implementation of microcontroller-based embedded systems. Topics include hardware architecture and glue logic, embedded programs design, analysis, and optimization, hardware/firmware partitioning, firmware architecture and design. Includes laboratory exercises using evaluation board and a complete embedded system design project. Emphasis on robust designs, energy efficiency, and proper documentation.
Prerequisites: COJO F131X or COJO F141X; EE F343 or EE F341; EE F354; EE F443; WRTG F111X; WRTG F211X, WRTG F212X, WRTG F213X or WRTG F214X; senior standing.
Recommended: CS F301.
Stacked with EE F645.
Lecture + Lab + Other: 3 + 3 + 0
EE F451 Digital Signal Processing
4 Credits
Offered Fall
Time, frequency and Z-transformation domain analysis of discrete time systems and signals; discrete Fourier transformation (DTFT) and FFT implementations; FIR/IIR filter design and implementation techniques; discrete time random signals and noise analysis; quantization and round off errors; and spectral analysis. Includes applications to medical, speech, electromagnetic and acoustic signal analysis.
Prerequisites: EE F354.
Stacked with EE F651.
Lecture + Lab + Other: 3 + 3 + 0
EE F461 Communication Systems
4 Credits
Offered Fall
Theory, design and implementation of communication systems. Measurement of modulation, noise, channel spectrum, satellite link budget and microwave path design.
Prerequisites: EE F354; senior standing.
Lecture + Lab + Other: 3 + 3 + 0
EE F463 Communication Networks
3 Credits
Offered Spring
Prerequisites: EE F354 and Senior standing.
Lecture + Lab + Other: 3 + 0 + 0
EE F464 Communication Networks Design (O, W)
4 Credits
Offered Spring
Prerequisites: COJO F131X or COJO F141X; EE F354; WRTG F111X; WRTG F211X, WRTG F212X, WRTG F213X or WRTG F214X; senior standing.
Lecture + Lab + Other: 3 + 3 + 0
EE F471 Automatic Control
3 Credits
Offered Spring
Prerequisites: EE F353; MATH F302.
Lecture + Lab + Other: 3 + 0 + 0

EE F488 Undergraduate Research
1-3 Credits
Advanced research topics from outside the usual undergraduate requirements.
Prerequisites: Permission of instructor.
Recommended: A substantial level of technical/scientific background.
Lecture + Lab + Other: 0 + 0 + 0

EE F608 Power Electronics Design
4 Credits
Offered Spring
Analysis and design of power electronic conversion, control and drive systems. Topics will include the theory and application of thyristors, rectifiers, DC-DC converters, inverters, resonant converters, AC and DC switches and regulators, power supplies, DC drives and adjustable-speed drives, including variable-frequency drives. Includes laboratory exercises using power electronic converter boards, PSPICE, and a complete power electronics design project.
Prerequisites: WRTG F111X; WRTG F211X, WRTG F212X, WRTG F213X or WRTG F214X; COJO F131X or COJO F141X; EE F303; EE F334; EE F354; senior standing.
Stacked with EE F408.
Lecture + Lab + Other: 3 + 3 + 0

EE F611 Waves
3 Credits
Offered Spring Odd-numbered Years
Introduction to waves and wave phenomena. Includes electromagnetic, acoustic, seismic, atmospheric and water waves and their mathematical and physical treatment in terms of Hamilton’s principle. Discusses propagation, attenuation, reflection, refraction, surface and laminal guiding, dispersion, energy density, power flow, and phase and group velocities. Treatment limited to plane harmonic waves in isotropic media.
Prerequisites: MATH F302 or MATH F421.
Lecture + Lab + Other: 3 + 0 + 0

EE F634 Microwave Design I
3 Credits
Offered Fall Odd-numbered Years
Analysis, design, fabrication and measurement of passive microwave components and circuits using microstrip construction techniques. Theoretical and computer-aided design of transmission lines, power dividers, hybrids, directional couplers and filters.
Prerequisites: EE F334; EE F412; EE F432.
Lecture + Lab + Other: 2 + 3 + 0

EE F635 Microwave Design II
3 Credits
Offered Spring Even-numbered Years
Analysis and design of solid-state microwave circuits. Amplifier and oscillator circuits are designed and fabricated using microstrip construction techniques and computer-aided design tools.
Prerequisites: EE F634.
Lecture + Lab + Other: 2 + 3 + 0

EE F643 Advanced Architectures for Parallel Computing
3 Credits
Offered Fall Odd-numbered Years
This course covers massively parallel computer architectures and their application for computationally intensive engineering problems. Fundamental hardware concepts and issues in designing such systems are introduced. Compute Unified Device Architecture (CUDA), developed by NVIDIA for the compute engines in their graphic processing units (GPUs), will be used as an example and a practical platform for student assignments. Through assignments and a project students will learn simulation, computational engineering, convolution, correlation, filtering, and similar problems of particular interest to engineering students.
Prerequisites: CS F201 or ES F201; EE F443 graduate standing.
Lecture + Lab + Other: 3 + 0 + 0

EE F645 Embedded Systems Design
4 Credits
Offered Spring
Issues surrounding the design and implementation of microcontroller-based embedded systems. Topics include hardware architecture and glue logic, embedded programs design, analysis, and optimization, hardware/firmware partitioning, firmware architecture and design. Includes laboratory exercises using evaluation board and a complete embedded system design project. Emphasis on robust designs, energy efficiency, and proper documentation.
Prerequisites: Graduate standing.
Stacked with EE F444.
Lecture + Lab + Other: 3 + 3 + 0

EE F646 Wireless Sensor Networks
3 Credits
Offered Fall Even-numbered Years
The course will survey the area of networked sensors, with a special focus on low-power wireless sensor networks. Topics covered will include communication standards and protocols for sensor networks, embedded operating systems, applications, collaborative processing, data fusion, and system architecture. Students will undertake a theoretical or practical research project.
Prerequisites: CS F201 or ES F201; EE F343 or EE F341; graduate standing.
Lecture + Lab + Other: 3 + 0 + 0

EE F647 Data Compression
3 Credits
Offered Spring Even-numbered Years
Study of algorithms and techniques that reduce information storage and transmission requirements. Both lossless and lossy techniques will be studied including: Huffman coding, arithmetic coding, image compression, and transform techniques.
Prerequisites: ES F201 or CS F201.
Lecture + Lab + Other: 3 + 0 + 0

EE F648 VLSI Design
3 Credits
Offered Spring Odd-numbered Years
Study of methods to integrate millions of transistors on a single chip and create optimized design. Topics include CMOS logic design, power and timing issues, VLSI architectures, and full custom layout. Students will use CAD tools to implement a VLSI design.
Prerequisite: EE F343.
Lecture + Lab + Other: 3 + 0 + 0
EE F651 Digital Signal Processing
4 Credits
Offered Fall
Time, frequency and Z-transformation domain analysis of discrete time systems and signals; discrete Fourier transformation (DFT) and FFT implementations; FIR/IIR filter design and implementation techniques; discrete time random signals and noise analysis; quantization and round off errors; and spectral analysis. Includes applications to medical, speech, electromagnetic and acoustic signal analysis.
Prerequisites: Graduate standing.
Stacked with EE F451.
Lecture + Lab + Other: 3 + 3 + 0

EE F655 Adaptive Filters
3 Credits
Offered Spring Even-numbered Years
Study to self-designing filters which recursively update depending on the statistics of the input data for optimum performance. Topics will include foundational material in probability of stochastic processes, spectral analysis, linear optimum filtering. Wiener-Hopf filters, Yule-Walker equations, forward and backward linear predictors, method of steepest descent, least squares techniques, and auto-regressive filters.
Prerequisites: EE F451.
Lecture + Lab + Other: 3 + 0 + 0

EE F656 Aerospace Systems Engineering
3 Credits
Offered Fall Odd-numbered Years
A multidisciplinary team of students will perform a preliminary design study of a major aerospace system. Design considerations will include requirements for project management, aerospace vehicle design, power, attitude control, thermal control, communications, computer control and data handling. The students will present their final design in a written report and a public seminar.
Prerequisites: Graduate standing.
Cross-listed with ME F656.
Lecture + Lab + Other: 3 + 0 + 0

EE F662 Digital Communication Theory
3 Credits
Offered Fall Even-numbered Years
Probability in communication systems, power spectral density, baseband formatting, bandpass modulation and demodulation, link analysis, coding and channel models. Sections of this course offered in Anchorage have an additional fee.
Prerequisites: EE F461.
Lecture + Lab + Other: 3 + 0 + 0

EE F671 Digital Control Systems
3 Credits
Offered As Demand Warrants
Study of digital control theory. Topics will include signal conversion, Z-transforms, state variable techniques, stability, time and frequency domain analysis and system design.
Prerequisites: EE F471.
Lecture + Lab + Other: 3 + 0 + 0

EE F698 Non-Thesis Research/Project
1-6 Credits
Lecture + Lab + Other: 0 + 0 + 0

EE F699 Thesis
1-12 Credits
Lecture + Lab + Other: 0 + 0 + 0