CIVIL ENGINEERING (CE)

CE F112 Elementary Surveying

3 Credits
Offered Spring
Basic plane surveying; use of transit, level, theodolite and total station. Traverses, public land system, circular curves, cross-sectioning and earthwork.

Prerequisites: MATH F152X.

Lecture + Lab + Other: 2 + 3 + 0

CE F302 Fundamentals of Transportation Engineering

3 Credits
Offered Spring
Introduces multi-modal transportation systems including highways, airports railroads and water transportation. Factors that influence planning, design and operation of these systems is discussed. Highway systems are emphasized in the course.

Prerequisites: CE junior standing.

Lecture + Lab + Other: 3 + 0 + 0

CE F326 Introduction to Geotechnical Engineering

4 Credits
Offered Spring
Fundamentals of geotechnical engineering including identification and classification of soil, physical and mechanical properties of soil, subsurface exploration, laboratory testing techniques, seepage, compaction, stresses in soil, soil consolidation, and drained and undrained shear strength of soil.

Prerequisites: ES F331; GE F261.

Lecture + Lab + Other: 3 + 3 + 0

CE F331 Structural Analysis

3 Credits
Offered Spring
Introduces techniques for the analysis of statically determinate and indeterminate structures to include beams, trusses and frames. Reviews internal force resultants, shear and moment diagrams, deflections, internal stresses. Discusses indeterminate analysis of structures, including methods of consistent deflections and slope-deflection. Provides and introduction to matrix methods.

Prerequisites: ES F209; ES F331.

Lecture + Lab + Other: 2 + 3 + 0

CE F334 Properties of Materials

3 Credits
Offered Spring

Corequisite: ES F331.

Lecture + Lab + Other: 2 + 3 + 0

CE F341 Environmental Engineering

4 Credits
Offered Fall
Introduces fundamentals of environmental engineering including theory and application of water and wastewater, solid waste and air quality engineering practice; natural processes that influence pollutant fate and use of these processes in engineered systems for pollution control.

Prerequisites: CHEM F106X; or graduate standing.

Lecture + Lab + Other: 3 + 3 + 0
CE F433 Reinforced Concrete Design
3 Credits
Offered Spring
Introduces structural design philosophies and current practices related to reinforced concrete design. Utilizes the ACI 318 Specification to discuss the behavior of reinforced concrete members and their design including flexural members, such as rectangular, T-beams, one-way slabs, and axial members. Crack control, anchorage, development lengths and deflections are covered.
Prerequisites: CE F331; ES F331.
Lecture + Lab + Other: 3 + 0 + 0

CE F434 Timber Design
3 Credits
Offered Fall
Prerequisites: CE F331; ES F331.
Lecture + Lab + Other: 3 + 0 + 0

CE F435 Design and Construction of Bridges
3 Credits
Offered Spring
Design-build technology for bridge structures is introduced. A bridge system is developed for a given crossing with predetermined specifications. Alternate designs are developed. These alternatives are based on design calculations, prepared drawings and suitability. Design ideas are developed and tested to verify if the idea meets the design assumptions. Techniques in design, fabrication, fund raising, project management, fiscal responsibility, safety, public speaking and teamwork are learned and used during the semester. The final structure will be load tested and graded based on meeting the goals of the specification.
Prerequisites: Permission of instructor.
Recommended: CE F432.
Lecture + Lab + Other: 1 + 6 + 0

CE F437 Design of Engineered Systems I
3 Credits
Offered Fall
Critical skills for a successful engineer with emphasis on: project planning; preliminary investigations; permitting; reading, interpreting, and creating plans and specification; use and technical applications of AutoCAD; proposal writing and project management; continuing education and professional registration.
Prerequisites: Civil engineering major with senior standing; COJO F131X or COJO F141X; WRTG F211X, WRTG F212X, WRTG F213X or WRTG F214X.
Lecture + Lab + Other: 3 + 0 + 0

CE F438 Design of Engineered Systems II
3 Credits
Offered Spring
System design principles using service learning projects with civil and environmental engineering focus. Practical applications of concepts covered in CE F437: ethics, liability and legal principles to professional practice. Emphasis on teamwork and leadership.
Prerequisites: COJO F131X or COJO F141X; WRTG F111X; WRTG F211X, WRTG F212X, WRTG F213X or WRTG F214X; CE F405 or CE F422 or CE F432 or CE F433 or CE F434 or CE F442 or CE F445; CE F437.
Lecture + Lab + Other: 3 + 0 + 0

CE F442 Environmental Engineering Design
3 Credits
Offered Fall
Presents design methods for pollution control and remediation systems. Applies theories and principles for the design of engineering systems for environmental protection, management and control, water and wastewater treatment and solid waste management.
Prerequisites: CE F341.
Lecture + Lab + Other: 3 + 0 + 0

CE F443 Air Pollution Management
3 Credits
Offered Spring
Air pollution topics including the quantity and quality of atmospheric emissions and their effects on the human environment. Identification and location of sources, measurement of quality and conformance with standards. Legal considerations of Clean Air Act and Amendments and local regulations. Evaluation of stationary and moving sources. Meteorology and modeling requirements. Control mechanisms for gases and particulates.
Prerequisites: CHEM F106X; graduate standing.
Recommended: MATH F252X.
Stacked with ENVE F643.
Lecture + Lab + Other: 3 + 0 + 0

CE F445 Hydrologic Analysis and Design
3 Credits
Offered Spring
Design and analysis; extended coverage of hydrologic concepts from CE F344. Precipitation, snow cover and evaporation analysis; groundwater hydraulics; runoff analysis and prediction; statistical hydrology; application of simulation models. Design of structures such as culverts, reservoirs, wells, pumps and pipe networks.
Prerequisites: CE F344.
Lecture + Lab + Other: 2 + 3 + 0

CE F451 Construction Cost Estimating and Bid Preparation
3 Credits
Offered Fall
Compilation and analysis of the many items that influence and contribute to the cost of projects to be constructed. Preparation of cost proposals and study of bidding procedures.
Recommended: College math.
Lecture + Lab + Other: 3 + 0 + 0

CE F463 Groundwater Dynamics
3 Credits
Offered Fall Odd-numbered Years
Fundamentals of geohydrology, hydraulics of flow through porous media, well hydraulics, groundwater pollution and groundwater resources development.
Corequisites: CE F344.
Stacked with CE F663.
Lecture + Lab + Other: 3 + 0 + 0
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites</th>
<th>Offered</th>
<th>Lecture + Lab + Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE F470</td>
<td>Civil Engineering Internship</td>
<td>1</td>
<td>Offered Fall, Spring and Summer</td>
<td>Supervised engineering field and work experience. Assignments individually arranged with cooperating agencies and must include data collection and reporting. As part of the requirements for earning credit, the student must have a letter of release from the company, prepare a written report and make an oral presentation.</td>
<td>0 + 3 + 0</td>
</tr>
<tr>
<td>CE F471</td>
<td>Field Practicum</td>
<td>1</td>
<td>Offered Fall</td>
<td>Introduction to field data collection techniques used in civil engineering sub-disciplines such as structural, traffic, water, environmental and materials; preliminary data analysis and descriptive statistics.</td>
<td>0 + 3 + 0</td>
</tr>
<tr>
<td>CE F601</td>
<td>Engineering Research Communication</td>
<td>3</td>
<td>Offered As Demand Warrants</td>
<td>Oral and written communication techniques to describe results on current issues in environmental science and engineering.</td>
<td>0 + 3 + 0</td>
</tr>
<tr>
<td>CE F603</td>
<td>Arctic Engineering</td>
<td>3</td>
<td>Offered Fall and Spring</td>
<td>Introduces students to a broad spectrum of engineering challenges unique to cold regions. Discusses physical principles and practical data collection methods, analyses, designs and construction methods. Students gain a working knowledge of cold regions engineering problems and modern solutions as a basis for more detailed study.</td>
<td>3 + 0 + 0</td>
</tr>
<tr>
<td>CE F605</td>
<td>Pavement Design</td>
<td>3</td>
<td>Offered As Demand Warrants</td>
<td>Provides instruction on the current practices of analysis and design of highway and airport pavements. The instruction includes theoretical and practical approaches for the design of flexible and rigid pavements. Materials characterization, load considerations, empirical and mechanistic design methods as well as rehabilitation are covered.</td>
<td>3 + 0 + 0</td>
</tr>
<tr>
<td>CE F607</td>
<td>GIS Applications in Civil Engineering</td>
<td>3</td>
<td>Offered As Demand Warrants</td>
<td>Theories and advanced methods of Geographic Information Systems for civil engineering practice. Students will apply and execute concepts related to data integration, analysis and management in the ArcGIS suite during labs.</td>
<td>2 + 3 + 0</td>
</tr>
<tr>
<td>CE F620</td>
<td>Construction Project Management</td>
<td>3</td>
<td>Offered As Demand Warrants</td>
<td>Construction equipment, methods, planning and scheduling, construction contracts, management and accounting, construction estimates, costs, and project control.</td>
<td>3 + 0 + 0</td>
</tr>
<tr>
<td>CE F622</td>
<td>Foundations and Retaining Structures</td>
<td>3</td>
<td>Offered As Demand Warrants</td>
<td>Advanced study of shallow and deep foundations; analyses and design of retaining walls, free-standing sheet-pile walls, braced excavations, slurry walls, tied-back retention systems, reinforced earth, frozen soil walls, anchored bulkheads, and cellular cofferdams.</td>
<td>3 + 0 + 0</td>
</tr>
<tr>
<td>CE F624</td>
<td>Permafrost Engineering</td>
<td>3</td>
<td>Offered Fall</td>
<td>Permafrost and frozen ground engineering, types of permafrost and ways of its formations, factors important for permafrost existence, hazards related to permafrost, index, thermal, and mechanical properties of frozen and thawing soils, thermal analysis methods of soil freezing and thawing, foundations design alternatives, pipelines, roads and airfields in permafrost regions.</td>
<td>0 + 3 + 0</td>
</tr>
<tr>
<td>CE F625</td>
<td>Soil Stabilization and Embankment Design</td>
<td>3</td>
<td>Offered As Demand Warrants</td>
<td>Soil and site improvement using deep and shallow compaction, additives, pre-loading, vertical and horizontal drains, electro-osmosis and soil reinforcement, dewatering and stabilization; embankment design, earth pressure theories and pressure in embankment, embankment stability, embankment construction, control and instrumentation.</td>
<td>3 + 0 + 0</td>
</tr>
<tr>
<td>CE F626</td>
<td>Thermal Geotechnics</td>
<td>3</td>
<td>Offered As Demand Warrants</td>
<td>Fundamentals of thermal regimes of soils and rocks. Thermal impact of structures on soils. Thawing of permafrost beneath roads, buildings and around pipelines. Natural and artificial freezing of soils. Engineering means to maintain thermal regime of soils. Thermal design considerations.</td>
<td>3 + 0 + 0</td>
</tr>
<tr>
<td>CE F627</td>
<td>Geotechnical Earthquake Engineering</td>
<td>3</td>
<td>Offered As Demand Warrants</td>
<td>Introduction to soil dynamics and geotechnical aspects of earthquakes; influences of soils on ground motion, determination of soil response under strong seismic motion, causes of soil failures, soil liquefaction, lateral spreading, the seismic response of earth structures, and seismic-deformation procedures for slopes.</td>
<td>3 + 0 + 0</td>
</tr>
</tbody>
</table>
CE F628 Unsaturated Soils Mechanics
3 Credits
Offered As Demand Warrants
Fundamentals of soil behavior under load; pore pressure during monotonic loading; Ladd's "Simple Clay" model; densification and drained cyclic loading of sand; undrained cycle loading of soil.
Prerequisites: CE F326.
Lecture + Lab + Other: 3 + 0 + 0

CE F630 Advanced Structural Mechanics
3 Credits
Offered As Demand Warrants
Shear and torsion, nonsymmetrical bending, shear center, curved beams, introduction to composite material mechanics, application in bridge engineering.
Prerequisites: MATH F302; ES F331.
Recommended: Graduate standing in engineering.
Lecture + Lab + Other: 3 + 0 + 0

CE F631 Advanced Structural Analysis
3 Credits
Offered As Demand Warrants
Derivation of the basic equations governing linear structural systems. Application of stiffness and flexibility methods to trusses and frames. Solution techniques utilizing digital computers. Planar structures and space structures (trusses and frames) will be covered. Both exact and approximate solution techniques will be reviewed.
Prerequisites: CE F331.
Lecture + Lab + Other: 3 + 0 + 0

CE F633 Theory of Elastic Stability
3 Credits
Offered As Demand Warrants
The theories of elastic and inelastic buckling are studied with practical implementation to slender structural members. Both lateral and local buckling concepts will be examined. Lateral torsional buckling of beams; buckling of beam-columns and frame members; and buckling of members with various cross-section shapes are extensively discussed.
Prerequisites: CE F331; CE F432; MATH F302.
Lecture + Lab + Other: 3 + 0 + 0

CE F634 Structural Dynamics
3 Credits
Offered As Demand Warrants
The theories of structural dynamics are studied with an emphasis on analysis and design of civil engineering structures under various dynamic loading. Topics include single and multiple degree-of-freedom systems subjected to free vibration, harmonic excitations and earthquakes. The basic concepts related to seismic design of structures will be discussed.
Prerequisites: ES F208, ES F210; CE F331; MATH F302.
Lecture + Lab + Other: 3 + 0 + 0

CE F635 Numerical Methods for Geomechanics and Soil-Structure Interaction
3 Credits
Offered As Demand Warrants
Applications of numerical methods for problems involving seepage, consolidation, foundation on expansive soils and pile installation. Finite difference and element methods, non-linear analysis techniques, elasto-plastic formulation with a tangent stiffness approach, seepage analysis, flow-deformation, coupled analysis, models for soil-structure interaction, solution accuracy and reliability.
Prerequisites: CE F326; graduate standing.
Recommended: MATH F302.
Lecture + Lab + Other: 3 + 0 + 0

CE F637 Earthquakes: Seismic Response of Structures
3 Credits
Offered As Demand Warrants
Fundamentals of structural earthquake engineering are provided. Topics include earthquake engineering; current seismic design criteria and practice; structural analysis for seismic load; design of lateral force resisting systems such as moment frames, braced frames and shear walls; design of diaphragms; and design of non-structural components.
Prerequisites: ES F208, ES F210.
Lecture + Lab + Other: 3 + 0 + 0

CE F640 Prestressed Concrete
3 Credits
Offered As Demand Warrants
Prerequisites: CE F331; CE F433.
Recommended: Graduate standing.
Lecture + Lab + Other: 3 + 0 + 0

CE F646 Structural Composites
3 Credits
Offered As Demand Warrants
The basics of structural composite theory. Basic design procedures related to structural composite members and the structural analysis of members made of various materials to create laminates or sandwich panels will be covered.
Prerequisites: ES F331; CE F331.
Lecture + Lab + Other: 3 + 0 + 0

CE F650 Bridge Engineering
3 Credits
Offered As Demand Warrants
Covers structural systems, loading and analysis by influence lines. Slab and girder bridges considering composite design, prestressed and concrete bridges and how these bridges are designed and rated using AASHTO specifications.
Prerequisites: CE F432; CE F433.
Lecture + Lab + Other: 3 + 0 + 0

CE F661 Advanced Water Resources Engineering
3 Credits
Offered Spring Odd-numbered Years
Engineering hydraulics and hydrology including use of standard computer models to solve water resource engineering problems.
Recommended: Permission of instructor.
Lecture + Lab + Other: 3 + 0 + 0

CE F662 Open Channel and River Engineering
3 Credits
Offered Spring Even-numbered Years
Principles of open channel flow, specific energy, hydraulic jump, transitions and controls, uniform and non-uniform flows, steady and unsteady flows, numerical solution for unsteady flows. River engineering, stream channel mechanics, and mechanics of sedimentation.
Recommended: Permission of instructor.
Lecture + Lab + Other: 3 + 0 + 0
CE F663 Groundwater Dynamics
3 Credits
Offered Fall Odd-numbered Years
Fundamentals of geohydrology, hydraulics of flow through porous media, well hydraulics, groundwater pollution and groundwater resources development.
Corequisites: CE F344.
Stacked with CE F463.
Lecture + Lab + Other: 3 + 0 + 0

CE F664 Sediment Transport
3 Credits
Offered Spring Even-numbered Years
Prerequisites: Graduate standing.
Lecture + Lab + Other: 3 + 0 + 0

CE F665 Introduction to Watershed Hydrology
3 Credits
Offered As Demand Warrants
A broad view of the water cycle at the watershed scale and introduction to the quantitative relations between components of the water cycle. Emphasis is placed on precipitation, evapotranspiration, water in soils and stream response to water-input events.
Prerequisites: MATH F253X; PHYS F211X.
Lecture + Lab + Other: 3 + 0 + 0

CE F682 Ice Engineering (a)
3 Credits
Offered As Demand Warrants
The factors governing design of marine structures, which must contend with the presence of ice. Topics include ice growth, ice structure, mechanical properties and their dependence on temperature and structure, creep and fracture, mechanics of ice sheets, forces on structures, and experimental methods.
Prerequisites: ES F331, MATH F253X, training or experience in soil mechanics.
Lecture + Lab + Other: 3 + 0 + 0

CE F683 Arctic Hydrology and Hydraulic Engineering (a)
3 Credits
Offered As Demand Warrants
Aspects of hydrology and hydraulics unique to engineering problems of the north. Although the emphasis will be on Alaskan conditions, information from Canada and other circumpolar countries will be included in the course.
Prerequisites: CE F344.
Lecture + Lab + Other: 3 + 0 + 0

CE F684 Arctic Utility Distribution (a)
3 Credits
Offered As Demand Warrants
Practices and considerations of utility distribution in Arctic regions. Emphasis on proper design to include freeze protection, materials, energy conservation and system selection.
Prerequisites: ES F341.
Lecture + Lab + Other: 3 + 0 + 0