<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL F100X</td>
<td>Human Biology</td>
<td>4</td>
<td>Offered As Demand Warrants
Introduction to scientific methodology and biological principles with a focus on humans as biological organisms. Topics include organization of the human body, human genetics, human development and the relationship between our bodies and health. Includes lecture, discussion, lab and projects. May not be used as biology elective credit for a major in biological sciences. Note: Intended for non-science majors and those seeking preliminary instruction before beginning study in health-related areas. Note: Available through UAF Community and Technical College, eLearning & Distance Education, Northwest and Rural campuses.</td>
</tr>
<tr>
<td>BIOL F103X</td>
<td>Biology and Society</td>
<td>(n)</td>
<td>4
Offered Spring; Fall at Northwest Campus
Fundamental principles of biology; emphasis on their application to humans in the modern world. Lectures, laboratory demonstrations, experiments and discussions of contemporary biological topics. For non-science majors; cannot be used as a biology elective by biological science majors.</td>
</tr>
<tr>
<td>BIOL F103L</td>
<td>Biology and Society Laboratory</td>
<td>1
(n)</td>
<td>0
Fall at Northwest Campus
A laboratory section only of BIOL F103X designed for transfer students that are non-science majors who have completed a natural science course with no laboratory at another institution. This lab cannot be used as a biology elective by biological science majors.</td>
</tr>
<tr>
<td>BIOL F104X</td>
<td>Natural History of Alaska</td>
<td>(n, a)</td>
<td>4
Offered Fall
The physical environment peculiar to the North and important in determining the biological setting; major ecosystem concepts to develop an appreciation for land use and wildlife management problems in both terrestrial and aquatic situations. May not be used as biology elective for a major in biological science.</td>
</tr>
<tr>
<td>BIOL F105X</td>
<td>Biochemistry</td>
<td>3 + 3</td>
<td>Fall at Northwest Campus
Introduction to scientific methodology and biological principles with a focus on humans as biological organisms. Topics include organization of the human body, human genetics, human development and the relationship between our bodies and health. Includes lecture, discussion, lab and projects. May not be used as biology elective credit for a major in biological sciences.</td>
</tr>
<tr>
<td>BIOL F106X</td>
<td>Biochemistry</td>
<td>3 + 3</td>
<td>Fall at Northwest Campus
Continuation of topics addressed in BIOL F105X, with emphasis on evolutionary biology, diversity of life, plant form and function and ecology. Students for whom this course is required for their major will be given preference when space is limited.</td>
</tr>
<tr>
<td>BIOL F107X</td>
<td>Epidemiology</td>
<td>3 + 3</td>
<td>Fall at Northwest Campus
Continuation of topics addressed in BIOL F106X, with emphasis on evolutionary biology, diversity of life, plant form and function and ecology. Students for whom this course is required for their major will be given preference when space is limited.</td>
</tr>
<tr>
<td>BIOL F108X</td>
<td>Environmental Science</td>
<td>3 + 3</td>
<td>Fall at Northwest Campus
Continuation of topics addressed in BIOL F107X, with emphasis on evolutionary biology, diversity of life, plant form and function and ecology. Students for whom this course is required for their major will be given preference when space is limited.</td>
</tr>
<tr>
<td>BIOL F109X</td>
<td>Environmental Science</td>
<td>3 + 3</td>
<td>Fall at Northwest Campus
Continuation of topics addressed in BIOL F108X, with emphasis on evolutionary biology, diversity of life, plant form and function and ecology. Students for whom this course is required for their major will be given preference when space is limited.</td>
</tr>
<tr>
<td>BIOL F110X</td>
<td>Animal Diversity</td>
<td>3 + 3</td>
<td>Fall at Northwest Campus
Continuation of topics addressed in BIOL F109X, with emphasis on evolutionary biology, diversity of life, plant form and function and ecology. Students for whom this course is required for their major will be given preference when space is limited.</td>
</tr>
<tr>
<td>BIOL F111X</td>
<td>Human Anatomy and Physiology I</td>
<td>(n)</td>
<td>4
Offered Fall
Integrated view of human structure and function. Provides a foundation in relevant chemistry, cell biology, histology and unifying concepts. Covers integumentary, skeletal, muscular and nervous systems.</td>
</tr>
<tr>
<td>BIOL F112X</td>
<td>Human Anatomy and Physiology II</td>
<td>(n)</td>
<td>4
Offered Spring
Integrated view of human structure and function. Continuation of Human A&P I. Covers endocrine, cardiovascular, lymphatic, immune, respiratory, digestive, urinary and reproductive systems.</td>
</tr>
<tr>
<td>BIOL F115X</td>
<td>Fundamentals of Biology I</td>
<td>(n)</td>
<td>4
Offered Fall
Introduction to the principles of biology for science majors, with emphasis on chemistry of life, cell structure, metabolism, genetics and animal form and function. Students for whom this course is required for their major will be given preference when space is limited.</td>
</tr>
<tr>
<td>BIOL F120X</td>
<td>Introduction to Human Nutrition</td>
<td>4</td>
<td>Offered Spring
This course provides students with an understanding of basic nutritional science and how the principles of nutrition can be used to achieve and maintain optimum health and well-being. Students will consider their own food choices in light of the scientific concepts covered in class. May not be used as a biology elective credit for a major in biological sciences.</td>
</tr>
<tr>
<td>BIOL F145</td>
<td>Introduction to Field Entomology</td>
<td></td>
<td>1
Offered Summer
An introduction to field entomology techniques. Emphasized will be professional procedures to collect and process (sort, mount, and label) non-marine arthropods. The skills necessary to identify most groups to Order will be taught. Students will create a collection from which specimens will be chosen for the University of Alaska Museum Insect Collection and the Teaching Collection. Note: This course cannot be used as a biology elective by biological science majors.</td>
</tr>
</tbody>
</table>
BIOL F239 Introduction to Plant Biology (n)
3 Credits
Offered Fall
Plant biology including plant form and function (morphology, physiology and development), ecology (including interactions with herbivores, pollinators and microbes), conservation, evolution and economic botany. Emphasis on vascular plants (particularly angiosperms) but includes comparisons with nonvascular plants.
Prerequisites: BIOL F115X; BIOL F116X.
Lecture + Lab + Other: 3 + 3 + 0
BIOL F240 Beginnings in Microbiology
4 Credits
Offered As Demand Warrants
Fundamentals of microbiology. Survey of the microbial world, interactions between microbes and host, microbial human diseases, the environmental and economic impact of microorganisms. Provides background in basic and applied microbiology with emphasis on the role microorganisms play in human biology. Offered at UAF Community and Technical College. Note: May not be used as biology elective credit for a major or minor in biological sciences.
Prerequisites: One course in high school or college-level biology required.
Recommended: One course in chemistry.
Lecture + Lab + Other: 3 + 3 + 0
BIOL F260 Principles of Genetics
4 Credits
Principles of inheritance; physiochemical properties of genetic systems.
Prerequisites: BIOL F115X; BIOL F116X; CHEM F105X; MATH F151X; LS F101X or successful completion of library skills competency test.
Lecture + Lab + Other: 3 + 3 + 0
BIOL F305 Invertebrate Zoology (n)
4 Credits
Offered Spring Even-numbered Years
Classification, structure, function, evolution and life histories of invertebrate animals.
Prerequisites: BIOL F115X; BIOL F116X.
Crosslisted with FISH F305; MSL F305.
Lecture + Lab + Other: 3 + 3 + 0
BIOL F310 Animal Physiology (n)
4 Credits
Offered Spring
Animal function, including respiration, digestion, circulation, nerve and muscle function, hormones and reproduction.
Prerequisites: BIOL F115X; BIOL F116X; CHEM F105X; CHEM F106X.
Lecture + Lab + Other: 3 + 3 + 0
BIOL F312 Medical Physiology
3 Credits
This course focuses on pathology to teach advanced concepts in human anatomy and physiology. Case studies and diagnostic problem solving will be used to promote the application of knowledge. Offer As Demand Warrants
Prerequisites: BIOL F115X and BIOL F116X; or BIOL F111X and BIOL F112X.
Lecture + Lab + Other: 3 + 0 + 0
BIOL F331 Systematic Botany (n, a)
3 Credits
Offered Spring Odd-numbered Years
Classification of flowering plants with emphasis on Alaskan flora; familiarity with taxonomy (identification, nomenclature, classification), evolution (speciation, reproductive biology, adaptation, convergence, biogeography) and phylogenetics (morphology and molecules). Lab emphasizes learning representative families and genera of Alaskan flora using keys and manuals.
Prerequisites: BIOL F239.
Recommended: BIOL F260.
Lecture + Lab + Other: 3 + 3 + 0
BIOL F335 Principles of Epidemiology (O/2)
3 Credits
Offered Spring
Introduction to the basic concepts of epidemiology, with examples from human to veterinary medicine, including chronic and infectious disease epidemiology, social epidemiology, outbreak investigation, properties of tests, and an introduction to study design and surveillance.
Prerequisites: STAT F200X.
Lecture + Lab + Other: 3 + 0 + 0
BIOL F342 Microbiology
4 Credits
Offered Spring
Morphology and physiology of microorganisms. The role of these organisms in the environment and their relationship to humans. Concepts of immunology. Laboratory stresses aseptic techniques for handling microorganisms.
Prerequisites: BIOL F115X; BIOL F116X; CHEM F105X.
Lecture + Lab + Other: 3 + 3 + 0
BIOL F360 Cell and Molecular Biology
4 Credits
Offered Fall or Spring
An introduction to the structure and function of cells. Topics include: the structure and function of cellular components, including proteins, membranes and organelles; understanding how cells communicate; and how information is processed in the cell via DNA replication, transcription and translation.
Prerequisites: BIOL F260; CHEM F105X; CHEM F106X (may be taken concurrently).
Cross-listed with CHEM F360.
Lecture + Lab + Other: 3 + 0 + 0
BIOL F371 Principles of Ecology
4 Credits
Offered Fall
Prerequisites: BIOL F115X; BIOL F116X.
Lecture + Lab + Other: 3 + 3 + 0
BIOL F392 Seminar
1-6 Credits
Lecture + Lab + Other: 0 + 0 + 1-6
BIOL F392P Seminar
1-6 Credits
Lecture + Lab + Other: 0 + 0 + 1-6
Biology (BIOL)

Biology (BIOL)
BIOL F426 Ornithology (O/2, W, n)
3 Credits
Offered Spring
Evolution, anatomy, physiology, distribution, migration, breeding biology of birds, their classification and identification.
Prerequisites: BIOL F115X; BIOL F116X; COJO F131X or COJO F141X; WRTG F111X; WRTG F211X, WRTG F212X, WRTG F213X or WRTG F214X.
Lecture + Lab + Other: 2 + 3 + 0

BIOL F427 Ichthyology (n)
4 Credits
Offered Spring
Major groups of fishes, emphasizing fishes of northwestern North America. Classification structure, evolution, general biology and importance to man.
Prerequisites: BIOL F116X.
Cross-listed with FISH F427.

Lecture + Lab + Other: 3 + 3 + 0

BIOL F433 Conservation Genetics
3 Credits
Offered Spring
Concepts of population genetics, phylogenetics, pedigree analysis, systematics and taxonomy as they apply to conservation of species. Evaluating the impact of small population size, population fragmentation, inbreeding, hybridization, taxonomic uncertainties and other factors on viability and management of species.
Prerequisites: BIOL F371; BIOL F260.
Recommended: NRM F277.
Cross-listed with WLF F433.
Stacked with BIOL F633; WLF F633.
Lecture + Lab + Other: 3 + 0 + 0

BIOL F434 Structure and Function of Vascular Plants (W)
4 Credits
Offered Spring Odd-numbered Years
Morphology, anatomy and physiology of vascular plants, stressing the interrelationships between development, anatomy, growth, water relations, photosynthesis, transport and metabolism. Student projects in this course may satisfy the capstone project requirement of the biological sciences degree.
Prerequisites: BIOL F115X and BIOL F116X; MATH F151X; STAT F200X; WRTG F111X; WRTG F211X, WRTG F212X, WRTG F213X or WRTG F214X; senior standing.
Lecture + Lab + Other: 3 + 3 + 0

BIOL F435 Introduction to Biology of Cancer
3 Credits
Course covers current concepts and knowledge of cancer, including cancer research and cancer treatment.
Prerequisites: BIOL F360.
Stacked with BIOL F635.
Lecture + Lab + Other: 3 + 0 + 0

BIOL F441 Animal Behavior (O/2, W)
3 Credits
Offered Fall
Evolutionary and ecological principles of individual and social behavior, genetic and physiological basis of behavior, techniques of behavioral observation, experimental manipulation and analysis. Design and implementation of independent research project on live animals. Student projects in this course may satisfy the capstone project requirement of the biological sciences degree.
Prerequisites: BIOL F481 (may be taken concurrently); BIOL F310; STAT F200X; COJO F131X or COJO F141X; WRTG F111X; WRTG F211X, WRTG F212X, WRTG F213X or WRTG F214X.
Lecture + Lab + Other: 2 + 2 + 1

BIOL F455 Environmental Toxicology (O)
3 Credits
Offered Fall Odd-numbered Years
Environmental toxicology will focus on the general properties and principles of persistent and/or poisonous (toxic) chemicals commonly encountered in air, water, fish and wildlife. Numerous natural and synthetic chemicals in the environment will be discussed from a global perspective with some bias towards Arctic and sub-Arctic regions.
Prerequisites: WRTG F111X; WRTG F211X, WRTG F212X, WRTG F213X or WRTG F214X; COJO F131X or COJO F141X; one semester each of organic chemistry and cell or molecular biology.
Cross-listed with CHEM F455.
Stacked with BIOL F656; CHEM F655.
Lecture + Lab + Other: 3 + 0 + 0

BIOL F456 Winter Ecology
3 Credits
Offered Fall
The focus of this course is on morphological, physiological and behavioral responses of animals and plants to winter conditions. Strategies of avoidance and tolerance of cold temperatures and low resources will be discussed. Analysis of physical and biological processes in seasonally snow-covered ecosystems. Includes principles of radiation and heat exchange, physics and chemistry of snow, thermoregulatory strategies in animals, and discussion of how winter affects trophic dynamics and population processes.
Prerequisites: BIOL F371.
Lecture + Lab + Other: 2 + 3 + 0

BIOL F457 Environmental Microbiology (W)
3 Credits
Offered Spring Even-numbered Years
This course focuses on the role of microorganisms in environmentally-relevant processes including bioremediation of pollutants, biogeochemical cycling, corrosion and wastewater treatment, including current methods for studying microbial diversity and function.
Prerequisites: BIOL F115X; BIOL F116X; BIOL F342; CHEM F105X; CHEM F106X.
Recommended: CHEM F351.
Stacked with BIOL F657.
Lecture + Lab + Other: 3 + 0 + 0
Biology (BIOL)

BIOL F460 Principles of Virology
3 Credits
Offered Spring
This course will explore current concepts in the field of virology, with emphasis on the structure, genetic material, and replication strategies of various human and animal viruses. In addition, mechanisms of viral pathogenesis, viral diagnostics, prevention and treatment of viral infection will be presented.
Prerequisites: BIOL F342 or BIOL F360.
Stacked with BIOL F660.
Lecture + Lab + Other: 3 + 0 + 0

BIOL F462 Infectious Diseases (O)
3 Credits
Offered Spring Odd-numbered Years
Covers infectious disease biology using examples of different pathogens and exploring the concepts of their biology and the implication of these principles on pathology, epidemiology and sociology of infectious diseases.
Prerequisites: BIOL F360 or BIOL F342.
Stacked with BIOL F662.
Lecture + Lab + Other: 3 + 0 + 0

BIOL F465 Immunology (n)
3 Credits
Offered Fall
Adaptive immune response including its components and activation from cells to molecules, clonal selection, antigen recognition, and discrimination between foreign and self. Concepts applied on the level of intact organisms addressing allergies, autoimmunity, transplantation, tumors and disease (AIDS).
Prerequisites: BIOL F115X and BIOL F116X and BIOL F310; or BIOL F111X and BIOL F112X.
Stacked with DVM F606.
Lecture + Lab + Other: 3 + 0 + 0

BIOL F466 Advanced Cell and Molecular Laboratory
3 Credits
Offered Spring
Modern molecular biological techniques including protein and nucleic acid gel electrophoresis, western blotting, cell fractionation, cellular respiration, enzymology and fluorescence microscopy. Lectures will be supplemented with reading from the primary literature. Student projects in this course may satisfy the capstone project requirements of the biological science degree. Student must also enroll in BIOL F400 to receive capstone credit.
Prerequisites: BIOL F360 or CHEM F360 may be taken concurrently.
Cross-listed with CHEM F466.
Lecture + Lab + Other: 2 + 4 + 0

BIOL F467 Ecosystems of Alaska (n)
3 Credits
Offered Summer Even-numbered Years; As Demand Warrants
Focus on the application of ecological principles to field research. Emphasis on the integration of ecology with climatology, geology and hydrology to understand the functioning of ecosystems at local and regional scales. One week of intensive lecture and library research followed by 10 days of field research in the major ecosystems of Alaska.
Prerequisites: An undergraduate course in ecology, geology, hydrology or climatology.
Lecture + Lab + Other: 2 + 3 + 0

BIOL F469 Landscape Ecology and Wildlife Habitat (O)
3 Credits
Offered As Demand Warrants
A problem-based learning and critical thinking approach to modern methods in landscape ecology, including geographic information systems, remote sensing, modeling, software and the Internet. Graduate students are expected to help undergraduates with problems and questions.
Prerequisites: BIOL F371; COJO F131X or COJO F141X.
Cross-listed with WLF F469.
Stacked with BIOL F669; WLF F669.
Lecture + Lab + Other: 2 + 3 + 0

BIOL F471 Population Ecology (n)
3 Credits
Offered Spring
Biology of populations of plants and animals, including population structure, natality, mortality, population growth, regulation of population size, population interactions in competition, herbivory, predation and parasitism.
Prerequisites: A calculus course; BIOL F371.
Lecture + Lab + Other: 2 + 3 + 0

BIOL F472 Community Ecology (W)
3 Credits
Offered Fall Even-numbered Years
Structure of plant and animal communities and their organization. Structuring forces of competition, predation, herbivory, mutualisms, and the flow of energy and nutrients. Latitudinal gradients in species richness and biogeography. Student projects in this course may satisfy the capstone project requirement of the biological sciences degree.
Prerequisites: BIOL F371; WRTG F111X; WRTG F211X, WRTG F212X, WRTG F213X or WRTG F214X.
Lecture + Lab + Other: 2 + 3 + 0

BIOL F473 Limnology (W)
3 Credits
Offered Fall
The ecology of inland waters emphasizing lakes and rivers. Lecture provides graphically oriented view of concepts. Laboratory involves team-based original research from proposal to manuscript. Student projects in this course may satisfy the capstone project requirement of the biological sciences degree.
Prerequisites: BIOL F115X; BIOL F116X; BIOL F371; CHEM F105X; CHEM F106X; WRTG F111X; WRTG F211X, WRTG F212X, WRTG F213X or WRTG F214X.
Lecture + Lab + Other: 2 + 3 + 0

BIOL F474 Plant Ecology (n)
4 Credits
Offered Spring Even-numbered Years
Principles and contemporary topics in plant ecology. Autoecology, community ecology, ecosystem ecology and evolutionary ecology.
Prerequisites: BIOL F239, BIOL F371, STAT F200X.
Lecture + Lab + Other: 3 + 3 + 0
Biol 476 Ecosystem Ecology (O, n)
3 Credits
Offered Fall Odd-numbered Years
Focus on the biological and physical principles that govern functioning of terrestrial ecosystems. Emphasis on how plants, animals and microorganisms control the movement of water, carbon and nutrients through ecosystems. Includes discussion of scientific literature and collection of original data.
Prerequisites: BIOL F260; STAT F200X (may be taken concurrently); junior standing.
Stacked with BIOL F681.
Lecture + Lab + Other: 3 + 0.5 + 0

Biol 481 Principles of Evolution
4 Credits
Patterns and processes of evolutionary change are used to explore the unifying principles of the biological sciences. Basic models of population genetics, quantitative genetics, development, phylogenetics and systematics are used to build a conceptual framework for study of living systems.
Prerequisites: BIOL F260; STAT F200X (may be taken concurrently); junior standing.
Stacked with BIOL F681.
Lecture + Lab + Other: 3 + 3 + 0

Biol 483 Stream Ecology
3 Credits
Offered As Demand Warrants
The ecology of streams and rivers focusing on physical, chemical and biological processes.
Prerequisites: BIOL F115X; BIOL F116X; BIOL F371. Recommended: CHEM F105X; CHEM F106X.
Lecture + Lab + Other: 3 + 0 + 0

Biol 485 Global Change Biology (W, n, a)
3 Credits
Offered Fall
 Causes of climate change, the climate record, and the effects of past and forecast climate change on biophysical systems. Consideration of impacts on plants, animals, ice, and people with an emphasis on Alaska and the Arctic.
Prerequisites: BIOL F371; CHEM F105X; CHEM F106X; WRTG F111X; WRTG F211X, WRTG F212X, WRTG F213X or WRTG F214X.
Cross-listed with WLF F485.
Lecture + Lab + Other: 3 + 0 + 0

Biol 486 Vertebrate Paleontology (n)
3 Credits
Offered Spring Odd-numbered Years
The study of vertebrate evolution through geologic time. Covers the temporal range, diversity and systematics of major vertebrate groups as documented in the fossil record, with an emphasis on current problems in vertebrate evolutionary pattern and process. Labs emphasize comparative morphology and identification of major vertebrate groups.
Prerequisites: BIOL F310 or GEOS F315.
Cross-listed with GEOS F486.
Stacked with GEOS F686; BIOL F686.
Lecture + Lab + Other: 2 + 3 + 0

Biol 487 Conceptual Issues in Evolutionary Biology
3 Credits
Offered Spring Odd-numbered Years
Analysis of some of the main models which explain evolutionary change, followed by consideration of the practical implications these models have on the study of biological phenomena in general.
Cross-listed with PHIL F487.
Stacked with BIOL F687; PHIL F687.
Lecture + Lab + Other: 3 + 0 + 0

Biol 488 Arctic Vegetation Ecology: Geobotany
3 Credits
Offered Spring Even-numbered Years
Arctic plants in relationship to Earth, including Arctic plant identification, climate, geology and geography controls on Arctic plant communities, snow ecology, applications to wildlife studies and current Arctic issues. Consists of lecture, labs and 1 winter field trip.
Prerequisites: BIOL F115X and BIOL F116X; BIOL F239 or BIOL F371.
Stacked with BIOL F688.
Lecture + Lab + Other: 3 + 1 + 0

Biol 489 Vegetation Description and Analysis
3 Credits
Offered Fall Even-numbered Years
Methods of vegetation science including sampling, classification, gradient analysis, ordination, field description and mapping. Field trips to the plant communities of interior Alaska.
Prerequisites: BIOL F239, BIOL F371 or BIOL F331.
Stacked with BIOL F689.
Lecture + Lab + Other: 2 + 3 + 0

Biol 490 Research Experience in Biology (W)
3 Credits
Offered Spring
Provides undergraduate opportunities for student research in advanced life science topics beyond typical undergraduate laboratory or course offerings. Students are required to publicly present their work and submit a final report summarizing their work and suitable as a component of a submission to a discipline-specific journal. Research areas range across all life sciences subjects (evolution, ecology, physiology, cell biology, biochemistry, molecular biology, etc.). A substantial level of background in the specific discipline, a level commensurate with having achieved junior or senior standing, is assumed.
Prerequisites: CHEM F105X; CHEM F106X; BIOL F115X; BIOL F116X.
Lecture + Lab + Other: 1 + 0 + 6

Biol 491 The Human Microbiome
4 Credits
Offered Fall
Biology of host-associated microbiomes with an emphasis on the human microbiome. Investigate microbial impacts on the behavior, physiology and fitness of their host. Explore model and non-model systems. Student projects in this course may satisfy the capstone project requirements of the biological science degree.
Prerequisites: BIOL F260 and STAT F200X.
Stacked with BIOL F691.
Lecture + Lab + Other: 3 + 3 + 0

Biol 492 Seminar
1-6 Credits
Lecture + Lab + Other: 0 + 0 + 0

Biol 492P Seminar
1-6 Credits
Lecture + Lab + Other: 0 + 0 + 0
BIOL F498 Research
1-6 Credits
Lecture + Lab + Other: 1-6 + 0 + 0

BIOL F602 Research Design
3 Credits
Offered Fall
An introduction to the philosophy, performance and evaluation of hypothetical/deductive research in the biological sciences, with emphasis on hypothesis formulation and testing. Each student will develop a research proposal.
Prerequisite: Graduate standing.
Cross-listed with WLF F602.
Lecture + Lab + Other: 3 + 0 + 0

BIOL F604 Scientific Writing, Editing and Revising in the Biological Sciences
3 Credits
Offered Spring
For students who are ready to produce a manuscript or thesis chapter. Topics include the publishing process (e.g., the role of editors and reviewers), preparing to write (selecting a journal, authorship), the components of the scientific paper, revising and editing manuscripts, and responding to reviews. Students will produce a complete manuscript.
Prerequisites: Graduate standing in Biology, Wildlife, or related discipline.
Cross-listed with WLF F604.
Lecture + Lab + Other: 3 + 0 + 0

BIOL F605 Animal Stable Isotope Ecology
3 Credits
Offered Spring Odd-numbered Years
Recent primary literature in stable isotope ecology, which uses naturally occurring variation in stable isotopes of carbon, nitrogen, oxygen, hydrogen and sulphur as markers of organismal and ecological processes. The focus will be on animal studies, including diet reconstruction, mixing models, food web, metabolism, nutrient allocation and migration.
Prerequisite: Graduate standing.
Lecture + Lab + Other: 3 + 0 + 0

BIOL F612 Exercise Physiology
3 Credits
Physiology responses and adaptation to exercise in humans, emphasizing energy metabolism, adipose and lean tissue, central and peripheral components of oxidative metabolism and the environmental influences on these parameters.
Prerequisites: Graduate standing.
Stacked with BIOL F412.
Lecture + Lab + Other: 3 + 0 + 0

BIOL F613 Resilience Internship
2 Credits
Offered Fall
Students of the Resilience and Adaptation Program participate in internships to broaden their interdisciplinary training, develop new research tools and build expertise outside their home disciplines. Internships are for eight to ten weeks of full time commitment and take place during the student’s first summer in the program. In autumn students meet to discuss their internship experiences and make public presentations.
Prerequisites: ANTH F667, BIOL F667, ECON F667 or NRM F667; ANTH F668, BIOL F668, ECON F668 or NRM F668.
Cross-listed with ANTH F617; ECON F613; NRM F613.
Lecture + Lab + Other: 2 + 0 + 0

BIOL F615 Systematic and Comparative Biology
4 Credits
Offered Fall Even-numbered Years
Concepts of systematic biology basic to a rigorous and complete understanding of modern evolutionary theory. Systematics provides the historical framework critical to a variety of comparative analyses in biology. Recent innovations in phylogenetic analyses will be explored in lecture and lab.
Prerequisites: Graduate standing.
Stacked with BIOL F415.
Lecture + Lab + Other: 3 + 3 + 0

BIOL F616 Ecological Background for Resilience and Adaptation (a)
1 Credit
Offered Fall
Provides the ecological background that is necessary for understanding the role of ecology in complex systems involving interactions among biological, economic, and social processes. Designed for incoming students of the Resilience and Adaptation Program (RAP), who have not received training in ecology.
Prerequisites: Graduate standing.
Cross-listed with NRM F616.
Lecture + Lab + Other: 1 + 0 + 0

BIOL F617 Neurobiology
3 Credits
Offered Spring Even-numbered Years
Organization and function of the vertebrate nervous system from the subcellular to the organismal levels. Neural bases of sensations, specific behaviors and homeostasis. Applications of basic neurobiological research to pathological conditions. Examples taken mostly from the recent vertebrate literature.
Prerequisites: BIOL F310; graduate standing.
Stacked with BIOL F417.
Lecture + Lab + Other: 3 + 0 + 0

BIOL F618 Biogeography (a)
3 Credits
Offered Fall
This course explores the geography of life by examining linkages between climate, geomorphology, and ecological communities with emphasis on the biogeography of sub-Arctic, polar and alpine regions.
Prerequisites: Graduate standing.
Cross-listed with GEOG F618.
Stacked with BIOL F418; GEOG F418.
Lecture + Lab + Other: 3 + 0 + 0

BIOL F628 Advanced Immunology
3 Credits
Offered Spring Even-numbered Years
Advanced level of knowledge and understanding of the structural and molecular basis of the innate and adaptive immune responses in terms of a complex system.
Prerequisites: BIOL F465; BIOL F360.
Cross-listed with CHEM F628.
Lecture + Lab + Other: 3 + 0 + 0
BIOL F632 Veterinary Bacteriology and Mycology
2 Credits
This course will discuss bacterial structure, differences between bacterial families, and fungi and their pathogenesis. The basic principles of bacterial and fungal pathogenesis will be presented. Host response to bacterial or fungal infection, immunity and the role of vaccines in disease prevention will be explained. Note: Effective Spring 2019 this course changed from 3 to 2 credits.
Prerequisites: Successful completion of first-semester veterinary courses.
Cross-listed with DVM F637; MSL F637.
Lecture + Lab + Other: 2 + 0 + 0

BIOL F633 Conservation Genetics
4 Credits
Offered Spring
Concepts of population genetics, phylogenetics, pedigree analysis, systematics and taxonomy as they apply to conservation of species. Evaluating the impact of small population size, population fragmentation, inbreeding, hybridization, taxonomic uncertainties and other factors on viability and management of species.
Prerequisites: BIOL F260; BIOL F371.
Recommended: NRM F277.
Cross-listed with WLF F633.
Stacked with BIOL F433; WLF F433.
Lecture + Lab + Other: 3 + 3 + 0

BIOL F634 Veterinary Parasitology
2 Credits
Offered Spring
Biology of helminth, arthropod and protozoan pathogens of animals with emphasis on common infectious diseases encountered in veterinary practice will be discussed. In addition, the course will discuss treatment and management options for parasitic infections of domestic animals.
Cross-listed with DVM F638; MSL F638.
Lecture + Lab + Other: 2 + 0 + 0

BIOL F635 Introduction to Biology of Cancer
3 Credits
Course covers current concepts and knowledge of cancer, including cancer research and cancer treatment.
Prerequisites: BIOL F360.
Stacked with BIOL F435.
Lecture + Lab + Other: 3 + 0 + 0

BIOL F639 Veterinary Virology
2 Credits
Offered Spring
This course will explore current concepts in the field of veterinary virology, with an emphasis on the viral structure, viral genetic material and viral replication strategies of various animal viruses. In addition, mechanisms of viral pathogenesis, prevention and treatment of viral infection will be presented.
Cross-listed with DVM F639; MSL F639.
Lecture + Lab + Other: 2 + 0 + 0

BIOL F640 Veterinary Pathology/Biology of Disease I
5 Credits
Offered Spring
This course will discuss basic principles of disease with special emphasis on processes likely to be encountered veterinary practice. We will discuss these topics organized by underlying disease mechanism. The discussions will move from general cell mediated processes to more specific disease mechanisms.
Prerequisites: Successful completion of first semester veterinary courses.
Cross-listed with MSL F642; DVM F640.
Lecture + Lab + Other: 4 + 3 + 0

BIOL F644 Advanced Topics in Evolution
3 Credits
Offered Spring Even-numbered Years
Modern theory and subdisciplinary directions in the expanding field of evolutionary biology. Topics include adaptation, speciation, reinforcement, comparative method, group selection, phylogeography, advanced systematics, geographic variation and the role of evolutionary biology in society. May be repeated for credit when content varies.
Prerequisites: Undergraduate course in evolution.
Lecture + Lab + Other: 3 + 0 + 0

BIOL F647 Global to Local Sustainability
3 Credits
Offered Fall
Explores the basic principles that govern resilience and change of ecological and social systems. Principles are applied across a range of scales from local communities to the globe. Working within and across each of these scales, students address the processes that influence ecological, cultural and economic sustainability, with an emphasis on northern examples.
Prerequisites: Graduate standing.
Cross-listed with ANTH F647; ECON F647; NRM F647.
Lecture + Lab + Other: 3 + 0 + 0

BIOL F649 Integrated Assessment and Adaptive Management
3 Credits
Offered Spring
An interdisciplinary exploration of the theoretical and practical considerations of integrated assessment and adaptive management. Students survey concepts important in understanding societal and professional-level decision-making. Students work as individuals and as a team to undertake case studies with relevance to integrated assessment and adaptive management. Collectively, the class builds a portfolio of cases and conducts an integrated assessment. Note: In case of enrollment limit, priority will be given to graduate students in the Resilience and Adaptation Program in order for them to be able to meet their core requirements.
Prerequisites: Graduate student standing in a natural science, social science, or interdisciplinary program at UAF or another university.
Recommended: ANTH F647, BIOL F647, ECON F647, NRM F647; ANTH F667, BIOL F667, ECON F667, NRM F667.
Cross-listed with ANTH F649, ECON F649; NRM F649.
Lecture + Lab + Other: 3 + 0 + 0
BIOL F656 Environmental Toxicology
3 Credits
Offered Fall Odd-numbered Years
Environmental toxicology will focus on the general properties and principles of persistent and/or poisonous (toxic) chemicals commonly encountered in air, water, fish and wildlife. Numerous natural and synthetic chemicals in the environment will be discussed from a global perspective with some bias towards Arctic and sub-Arctic regions.
Prerequisites: CHEM F351; or one semester each of organic chemistry and cell or molecular biology.
Cross-listed with CHEM F655.
Stacked with BIOL F455; CHEM F455.
Lecture + Lab + Other: 3 + 0 + 0

BIOL F657 Environmental Microbiology
3 Credits
Offered Spring Even-numbered Years
This course focuses on the role of microorganisms in environmentally-relevant processes including bioremediation of pollutants, biogeochemical cycling, corrosion and wastewater treatment, including current methods for studying microbial diversity and function.
Prerequisites: BIOL F115X; BIOL F116X; BIOL F342; CHEM F105X; CHEM F106X.
Recommended: CHEM F351.
Stacked with BIOL F457.
Lecture + Lab + Other: 3 + 0 + 0

BIOL F660 Principles of Virology
3 Credits
Offered Spring
This course will explore current concepts in the field of virology, with emphasis on the structure, genetic material, and replication strategies of various human and animal viruses. In addition, mechanisms of viral pathogenesis, viral diagnostics, prevention and treatment of viral infection will be presented.
Prerequisites: Graduate standing.
Stacked with BIOL F460.
Lecture + Lab + Other: 3 + 0 + 0

BIOL F662 Concepts of Infectious Disease
3 Credits
Offered Spring Odd-numbered Years
Covers infectious disease biology using examples of different pathogens and exploring the concepts of their biology and the implication of these principles on pathology, epidemiology and sociology of infectious diseases.
Prerequisites: Graduate standing; BIOL F360 or BIOL F342.
Stacked with BIOL F462.
Lecture + Lab + Other: 3 + 0 + 0

BIOL F665 Aquatic Entomology
2 Credits
Offered Fall Odd-numbered Years
Aquatic invertebrate taxonomy, mostly to the family level, and ecology. Includes field trips to learn collecting techniques and habitats.
Prerequisites: Graduate standing; Students must be able to safely wade in streams and wetlands.
Cross-listed with FISH F665.
Lecture + Lab + Other: 1 + 3 + 0

BIOL F667 Resilience Seminar I
1 Credit
Offered Fall
Provides a forum for new students of the Resilience and Adaptation graduate program to explore issues of interdisciplinary research that are relevant to sustainability. A considerable portion of the seminar is student-directed, with students assuming leadership in planning seminar activities with the instructor.
Prerequisites: Student must be enrolled in Resilience and Adaptation graduate program.
Recommended: ANTH F647, BIOL F647, ECON F647 or NRM F647 (taken concurrently).
Cross-listed with ANTH F667; ECON F667; NRM F667.
Lecture + Lab + Other: 2 + 0 + 0

BIOL F668 Resilience Seminar II
1 Credit
Offered Spring
Provides a forum for new students of the Resilience and Adaptation graduate program to explore issues of interdisciplinary research relevant to sustainability. The seminar provides support to each student planning his/her summer internship and preparing and presenting a thesis research prospectus.
Prerequisites: Graduate standing.
Cross-listed with WLF F669.
Lecture + Lab + Other: 2 + 3 + 0

BIOL F669 Landscape Ecology and Wildlife Habitat
3 Credits
Offered As Demand Warrants
A problem-based learning and critical thinking approach to modern methods in landscape ecology, including geographic information systems, remote sensing, modeling, software and the Internet. Graduate students are expected to help undergraduates with problems and questions.
Prerequisites: Graduate standing.
Cross-listed with WLF F669.
Lecture + Lab + Other: 2 + 0 + 0

BIOL F672 Ecosystem Processes
3 Credits
Offered Fall Odd-numbered Years
A comparative approach to the structural and functional components of terrestrial ecosystems, emphasizing primary and secondary production and the dynamics of nutrient cycling processes. Interactions between producers, consumers and decomposition processes, and effects on the efficiencies of nutrient and energy transfers.
Prerequisites: Graduate standing.
Lecture + Lab + Other: 2 + 2 + 0

BIOL F675 Plant Physiological Ecology
3 Credits
Offered Fall Even-numbered Years
Physiological ecology of dormancy, germination, growth, photosynthesis, water relations and nutrition with an emphasis on northern and other stressful environments; relationship to community and ecosystem processes.
Prerequisites: Graduate standing; BIOL F239; BIOL F434; BIOL F474.
Lecture + Lab + Other: 2 + 3 + 0

BIOL F675 Plant Physiological Ecology
3 Credits
Offered Fall Even-numbered Years
Physiological ecology of dormancy, germination, growth, photosynthesis, water relations and nutrition with an emphasis on northern and other stressful environments; relationship to community and ecosystem processes.
Prerequisites: Graduate standing; BIOL F239; BIOL F434; BIOL F474.
Lecture + Lab + Other: 2 + 3 + 0
BIOL F679 Cellular and Molecular Neuroscience
3 Credits
Offered Fall Even-numbered Years
The goal of this course is to provide an overview of the cellular and molecular underpinnings of signaling in the nervous system. Discussions will be focused on properties of excitable membranes, synaptic transmission, and neurological integration. Fundamentals of the functional properties of neurons will provide the background for discussions of small neuronal circuits that regulate behavior, the cellular/molecular basis of learning and memory, and pharmacological approaches for the treatment of neuronal pathologies.
Prerequisites: Two F300-level courses in BIOL or CHEM; MATH F251X or MATH F230X.
Recommended: MATH F252X.
Cross-listed with CHEM F670.
Stacked with CHEM F470.
Lecture + Lab + Other: 3 + 0 + 0

BIOL F680 Data Analysis in Biology
3 Credits
Offered Fall
Biological applications of nonparametric statistics, including tests based on binomial and Poisson distributions, analysis of two-way and multway contingency tables, and tests based on ranks; multivariate statistics, including principal component analysis, ordination techniques, cluster and discriminate analysis; and time-series analysis. Introduction to the use of the computer and use of statistical packages. Each student will analyze a data set appropriate to the student’s research interests.
Prerequisites: STAT F200X; STAT F401; graduate standing in a biologically oriented field.
Cross-listed with WLF F680.
Lecture + Lab + Other: 2 + 3 + 0

BIOL F681 Principles of Evolution
4 Credits
Patterns and processes of evolutionary change are used to explore the unifying principles of the biological sciences. Basic models of population genetics, quantitative genetics, development, phylogenetics and systematics are used to build a conceptual framework for study of living systems.
Prerequisites: Graduate standing with courses in genetics, ecology and statistics; STAT F200X (may be taken concurrently).
Stacked with BIOL F481.
Lecture + Lab + Other: 3 + 3 + 0

BIOL F686 Vertebrate Paleontology
3 Credits
Offered Spring Odd-numbered Years
The study of vertebrate evolution through geologic time. Covers the temporal range, diversity and systematics of major vertebrate groups as documented in the fossil record, with an emphasis on current problems in vertebrate evolutionary pattern and process. Labs emphasize comparative morphology and identification of major vertebrate groups.
Prerequisites: Graduate standing.
Cross-listed with BIOL F486; GEOS F486.
Stacked with GEOS F686.
Lecture + Lab + Other: 2 + 3 + 0

BIOL F687 Conceptual Issues in Evolutionary Biology
3 Credits
Offered Spring Odd-numbered Years
Analysis of some of the main models which explain evolutionary change followed by consideration of the practical implications these models have on the study of biological phenomena in general.
Cross-listed with PHIL F687.
Stacked with BIOL F487; PHIL F487.
Lecture + Lab + Other: 3 + 0 + 0

BIOL F688 Arctic Vegetation Ecology: Geobotany
3 Credits
Offered Spring Even-numbered Years
Arctic plants in relationship to Earth, including Arctic plant identification, climate, geology and geography controls on Arctic plant communities, snow ecology, applications to wildlife studies and current Arctic issues. Consists of lecture, labs and 1 winter field trip.
Prerequisites: BIOL F115X and BIOL F116X; BIOL F239 or BIOL F371.
Stacked with BIOL F488.
Lecture + Lab + Other: 3 + 1 + 0

BIOL F691 The Human Microbiome
4 Credits
Offered Fall
Biology of host-associated microbiomes with an emphasis on the human microbiome. Investigate microbial impacts on the behavior, physiology and fitness of their host. Explore model and non-model systems. Student projects in this course may satisfy the capstone project requirements of the biological science degree.
Prerequisites: BIOL F260 or STAT F200X.
Stacked with BIOL F491.
Lecture + Lab + Other: 3 + 3 + 0

BIOL F692 Seminar
1-6 Credits
Lecture + Lab + Other: 0 + 0 + 0

BIOL F692P Seminar
1-6 Credits
Lecture + Lab + Other: 0 + 0 + 0

BIOL F698 Non-thesis Research/Project
1-12 Credits
Lecture + Lab + Other: 0 + 0 + 0

BIOL F699 Thesis
1-12 Credits
Lecture + Lab + Other: 0 + 0 + 0