ATM F101X Weather and Climate of Alaska (n, a)
4 Credits
Offered Spring
Focus on the atmosphere as an important part of our environment. Study of weather and climate that covers weather observation, composition and properties of the atmosphere, weather and circulation systems, forecasting weather based on fundamental laws of physics and chemistry. Students are required to make weather observations in Alaska. The students will use their local observations as a foundation and a vantage point to understand the regional and global behavior of the atmosphere (i.e., "Observe locally and connect globally").
Prerequisites: Placement in WRTG F111X or higher; placement in DEV M F105 or higher; or permission of instructor.
Attributes: UAF GER Natural Science Req
Lecture + Lab + Other: 3 + 3 + 0

ATM F401 Introduction to Atmospheric Sciences
3 Credits
Offered Fall
Fundamentals of atmospheric science. Includes energy and mass conservation, internal energy and entropy, atmospheric water vapor, cloud microphysics, equations of motion, hydrostatics, phase oxidation, heterogeneous chemistry, the ozone layer, fundamentals of biogeochemical cycles, solar and terrestrial radiation and radiative-convective equilibrium. Also includes molecular, cloud and aerosol absorption and scattering.
Prerequisites: CHEM F105X; CHEM F106X; MATH F302; PHYS F212X.
Stacked with ATM F601; CHEM F601.
Lecture + Lab + Other: 3 + 3 + 0

ATM F413 Atmospheric Radiation
3 Credits
Offered Fall Odd-numbered Years
Atmospheric radiation including the fundamentals of blackbody radiation theory and radiative properties of atmospheric constituents. Discussion of gaseous absorption including line absorption, broadening effects and radiative transfer. Includes scattering, radiative properties of clouds and radiation climatology.Prerequisites/Co-requisites: ATM F401.
Cross-listed with PHYS F413.
Stacked with ATM F613 and PHYS F613.
Lecture + Lab + Other: 3 + 3 + 0

ATM F415 Cloud Physics
3 Credits
Offered Spring Even-numbered Years
Basic properties of condensed water vapor in the atmosphere. Formation and behavior of clouds including the nature of atmospheric aerosols, nucleation and growth of water droplets and ice crystals, the development of precipitation, nature of mixed-phase (water and ice) clouds, how transfer of radiation depends on the character of clouds, and how humans are modifying clouds and precipitation both intentionally and unintentionally. Field trips will collect data at the Arctic Facility for Atmospheric Remote Sensing (AFARS). Microscopic examination and have available for use of a sophisticated cloud model.
Prerequisites: ATM F401, may be taken concurrently.
Stacked with ATM F615.
Lecture + Lab + Other: 3 + 0 + 0

ATM F444 Weather Analysis and Forecasting
3 Credits
Offered Spring Even-numbered Years
Weather systems and the techniques used to understand and predict their behavior. Topics include atmospheric observations, synoptic analysis techniques, satellite image interpretation, kinematics, fronts and frontogenesis, life cycles of extratropical cyclones, mesoscale phenomena, numerical weather prediction and interpretation of forecast products.
Prerequisites: ATM F401; ATM F445.
Stacked with ATM F644.
Lecture + Lab + Other: 3 + 0 + 0

ATM F445 Atmospheric Dynamics
3 Credits
Offered Fall Even-numbered Years
Fundamentals of equations of motion, conservation laws, balance relationships and coordinate systems. Vorticity dynamics includes vortex filaments and tubes, vorticity equations, Rossby-Haurwitz waves, Ertel's PV principle for the potential vorticity, EPV in isentropic coordinates. Includes balance and quasi-geostrophy, QG theory, scaling of the QG system, the w equation, QG and numerical modeling.Prerequisites/co-requisites: ATM F401.
Stacked with ATM F645.
Lecture + Lab + Other: 3 + 0 + 0

ATM F456 Climate and Climate Change (a)
3 Credits
Offered Fall Odd-numbered Years
The climate of planet Earth and its changes with time. Radiative fluxes, greenhouse effects, energy budget, hydrological cycle, the atmospheric composition and climatic zones. Physical and chemical reasons for climatic change.
Prerequisites: Any 400 level Physics or Chemistry course or ATM F401 or permission of instructor; basic computer skills.
Lecture + Lab + Other: 3 + 0 + 0

ATM F488 Undergraduate Research
1-3 Credits
Advanced research topics from outside the usual undergraduate requirements.
Prerequisites: Permission of instructor.
Recommended: A substantial level of technical/scientific background.
Lecture + Lab + Other: 0 + 0 + 0

ATM F601 Introduction to Atmospheric Sciences
3 Credits
Offered Fall
Fundamentals of atmospheric science. Includes energy and mass conservation, internal energy and entropy, atmospheric water vapor, cloud microphysics, equations of motion, hydrostatics, phase oxidation, heterogeneous chemistry, the ozone layer, fundamentals of biogeochemical cycles, solar and terrestrial radiation and radiative-convective equilibrium. Also includes molecular, cloud and aerosol absorption and scattering.
Prerequisites: Graduate standing.
Cross-listed with CHEM F601.
Lecture + Lab + Other: 3 + 0 + 0
ATM F606 Atmospheric Chemistry
3 Credits
Offered Spring Odd-numbered Years
Chemistry of the lower atmosphere (troposphere and stratosphere) including photo chemistry, kinetics, thermodynamics, box modeling, biogeochemical cycles and measurements techniques for atmospheric pollutants. Study of important impacts to the atmosphere which result from anthropogenic emissions of pollutants, including acid rain, the "greenhouse" effect, urban smog and stratospheric ozone depletion. Prerequisites/co-requisites: ATM F601 or permission of instructor.
Cross-listed with CHEM F606.
Stacked with ATM F415.
Lecture + Lab + Other: 3 + 0 + 0

ATM F610 Analysis Methods in Meteorology and Climate
3 Credits
Offered Spring Odd-numbered Years
Introduction to standard analysis topics in Atmospheric Sciences, including basic aggregate stats, time series work, eigenmode analysis, mixed models, and extreme value analysis. Focus on manipulation of very large data sets, especially weather/climate model output. Hands-on instruction in supporting computer topics. Student presentations will be emphasized.
Prerequisites: ATM F601; graduate standing; or permission of the instructor.
Recommended: Basic computer and mathematical knowledge to analyze and plot data.
Lecture + Lab + Other: 3 + 0 + 0

ATM F613 Atmospheric Radiation
3 Credits
Offered Spring Odd-numbered Years
Fundamentals of blackbody radiation theory and radiative properties of atmospheric constituents. Discussion of gaseous absorption including line absorption, broadening effects and radiative transfer. Includes scattering, radiative properties of clouds, and radiation climatology. Prerequisites/co-requisites: ATM F601; graduate standing.
Cross-listed with PHYS F613.
Stacked with ATM F413 and PHYS F413.
Lecture + Lab + Other: 3 + 0 + 0

ATM F615 Cloud Physics
3 Credits
Offered Spring Even-numbered Years
Basic properties of condensed water vapor in the atmosphere. Formation and behavior of clouds including the nature of atmospheric aerosols, nucleation and growth of water droplets and ice crystals, the development of precipitation, nature of mixed-phase (water and ice) clouds, how transfer of radiation depends on the character of clouds, and how humans are modifying clouds and precipitation both intentionally and unintentionally. Field trips will collect data at the Arctic Facility for Atmospheric Remote Sensing (AFARS). Microscopic examination and have available for use of a sophisticated cloud model.
Prerequisites: ATM F601; graduate standing; or permission of instructor.
Stacked with ATM F415.
Lecture + Lab + Other: 3 + 0 + 0

ATM F620 Climate Journal Club Seminar
1 Credit
Offered Spring
The "Climate Group" is an informal meeting for researchers and graduate students. The seminars alternate between progress reports on ongoing research and journal club contributions. The main interests articles, formal and informal presentation by locals and visitors will be on the agenda. Participating students will be exposed to a free format discussion of modern ideas in climate related disciplines. All students are encouraged to contribute and students taking the course for credit are required to lead the discussion for one session. This may include the presentation of a research plan/results, or a discussion of a journal article. Students will be graded on at least one presentation and participation in the class.
Prerequisites: Graduate standing or permission of instructor.
Lecture + Lab + Other: 1 + 0 + 0

ATM F621 Introduction to Computational Meteorology
1 Credit
Offered Fall
Introduce the basic knowledge on how to apply software related to atmospheric sciences problems. This includes knowledge of UNIX/Linux, FORTRAN90, IDL, NCL, MATLAB and how to read NetCDF files, grib-files, etc., which are special data formats in which climate data are available. Students will learn how to run given software products on UNIX/Linux and other platforms and basic tools to modify these programs for their purposes. Prerequisites: Graduate standing.
Lecture + Lab + Other: 1 + 0 + 0

ATM F624 Oceanic-Atmospheric Gravity Waves
3 Credits
Offered Spring; As Demand Warrants
An introduction to the dynamics of surface and internal gravity waves in non-rotating and rotating fluids including, derivation/solutions of the wave equation, approximations to the governing equations, particle motions and wave energetics, dispersion relationships, phase and group velocities, normal mode and WKB theory, refraction, reflection, critical layer absorption, wave instabilities.
Prerequisites: MSL F620, MATH F302; or permission of instructor.
Cross-listed with MSL F624.
Lecture + Lab + Other: 3 + 0 + 0

ATM F631 Environmental Fate and Transport
3 Credits
Offered Spring Even-numbered Years
Examination of the physical properties that govern the behavior, fate and transport of contaminants released into the environment. Topics include air-water partitioning and exchange, organic solvent-water partitioning, diffusion, sorption, chemical and biological transformation reactions, and modeling concepts.
Cross-listed with CHEM F631.
Lecture + Lab + Other: 3 + 0 + 0
ATM F644 Weather Analysis and Forecasting
3 Credits
Offered Spring Even-numbered Years
Weather systems and the techniques used to understand and predict their behavior. Topics include atmospheric observations, synoptic analysis techniques, satellite image interpretation, kinematics, fronts and frontogenesis, life cycles of extratropical cyclones, mesoscale phenomena, numerical weather prediction and interpretation of forecast products.
Prerequisites: ATM F601; ATM F645.
Stacked with ATM F444.
Lecture + Lab + Other: 3 + 0 + 0

ATM F645 Atmospheric Dynamics
3 Credits
Offered Fall Even-numbered Years
Examination of the fundamental forces and basic conservation laws that govern the motion of the atmosphere. Topics include momentum, continuity equations, circulation, vorticity, thermodynamics, the planetary boundary layer and synoptic scale motions in mid-latitudes. Prerequisites/co-requisites: ATM F601; graduate standing.
Stacked with ATM F445.
Lecture + Lab + Other: 3 + 0 + 0

ATM F647 Fundamentals of Geophysical Fluid Dynamics
3 Credits
Offered Fall Odd-numbered Years
Introduction to the mechanics of fluid systems, the fundamental processes, Navier-Stokes' equations in rotating and stratified fluids, kinematics, conservation laws, vortex motion, irrotational flow, laminar flow, boundary layer phenomena, waves, instabilities, turbulent flows and mixing.
Prerequisites: Graduate standing or permission of instructor.
Cross-listed with PHYS F647.
Lecture + Lab + Other: 3 + 0 + 0

ATM F656 Climate and Climate Change (a)
3 Credits
Offered Fall Odd-numbered Years
The climate of planet Earth and its changes with time. Radiative fluxes, greenhouse effects, energy budget, hydrological cycle, the atmospheric composition and climatic zones. Physical and chemical reasons for climatic change.
Prerequisites: Graduate standing; calculus, physics or related courses at F400-level, basic computer skills.
Recommended: ATM F601 or ATM F401; basic computer knowledge to plot and analyze climate data.
Lecture + Lab + Other: 3 + 0 + 0

ATM F658 Air-Sea Interactions
3 Credits
Offered Spring Even-numbered Years
Course covers the basics processes governing air-sea interactions at different temporal and spatial scales including; transfer of heat and momentum through air-sea surface, interactions of atmospheric and oceanic mixed layers, important examples of air-sea interactions; i.e. El Niño and interactions between high-latitude atmosphere and ocean.
Prerequisites: ATM F601; graduate standing; or permission of instructor.
Lecture + Lab + Other: 3 + 0 + 0

ATM F662 Numerical Modeling and Parameterization Methods
3 Credits
Offered Spring Even-numbered Years
Construction of models from fundamental equations and the necessity of parameterizations. Simplification and discretization of equations, numerical methods, model-grids, analytical modeling, boundary and initial conditions, parameterizations and evaluation of model results. Scale-dependency, limitations of parameterizations and coupled modeling are elucidated. Students apply and code aspects of models themselves.
Prerequisites: Graduate standing; calculus, physics or related F400-level basic computer skills.
Recommended: ATM F601; basic knowledge in Fortran and UNIX/LINUX.
Lecture + Lab + Other: 3 + 0 + 0

ATM F666 Atmospheric Remote Sensing
3 Credits
Offered Spring Odd-numbered years
Modern atmospheric research is becoming increasingly reliant on measurements made from afar using instruments sensing various portions of the electromagnetic spectrum. Using principally microwave radars and visible-wavelength laser lidars, often combined with passive measurements from radiometers, many properties of the atmosphere can be routinely profiled by remote sensors located at the ground, from aircraft, or satellite. This course will concentrate on the fundamentals of these families of active remote sensors including their designs and operating principles, applicable backscattering and extinction theories, and derive their basic radar equation.
Prerequisites: ATM F401 or ATM F601; graduate standing or permission of instructor.
Lecture + Lab + Other: 3 + 0 + 0

ATM F673 Introduction to Micrometeorology
3 Credits
A comprehensive explanation of micrometeorology, its basic theories of physics, mechanisms, measurement procedures, methods and how micrometeorological processes interact with the meso- and large-scale atmospheric motion. This class will deal with weather conditions on a small scale, both in terms of space and time. For example, weather conditions lasting less than a day in the area immediately surrounding a smokestack, a building, air flow in street channels, or a small air shed.
Prerequisites: ATM F601; graduate standing or permission of the instructor.
Lecture + Lab + Other: 3 + 0 + 0

ATM F678 Mesoscale Dynamics
3 Credits
Offered As Demand Warrants
A comprehensive explanation of mesoscale air motions – their phenology, basic physics and mechanisms, why they build and how mesoscale motions interact with the micro and large scale. Classical and non-classical mesoscale circulations, super cell, single and multiple cell thunderstorm dynamics and tornado formation.
Prerequisites: ATM F401 or ATM F601 or permission of instructor.
Recommended: 400-level physics, calculus I to III.
Lecture + Lab + Other: 3 + 0 + 0
ATM F688 Atmospheric Science Informal Seminar
1 Credit
Review of ongoing research in atmospheric science to learn about research results, ideas and direction long before they are published in journals. Presentations cover the broad range of atmospheric sciences and links to other disciplines as required to answer questions on global variability, climate change and assessment studies.
Prerequisites: Graduate standing in physical sciences or permission of instructor.
Lecture + Lab + Other: 1 + 0 + 0

ATM F692 Seminar
1-3 Credits
Lecture + Lab + Other: 0 + 0 + 0

ATM F692P Seminar
1-3 Credits
Lecture + Lab + Other: 0 + 0 + 0

ATM F698 Non-Thesis Research/Project
1-12 Credits
Lecture + Lab + Other: 0 + 0 + 1-12

ATM F699 Thesis
1-12 Credits
Lecture + Lab + Other: 0 + 0 + 1-12